伴随矩阵(伴随矩阵的秩与矩阵的秩的关系)

更新时间:2023-03-01 20:21:59 阅读: 评论:0

三阶矩阵求伴随矩阵

用代数余子式或者公式A的伴随矩阵=|A|*A^-1A^*=1 -2 70 1 -20 0 1首先介绍 “代数余子式” 这个概念:

设 D 是一个n阶行列式,aij (i、j 为下角标)是D中第i行第j列上的元素。在D中

把aij所在的第i行和第j列划去后,剩下的 n-1 阶行列式叫做元素 aij 的“余子式”,记作 Mij。把 Aij = (-1)^(i+j) *

Mij 称作元素 aij 的“代数余子式”。 (符号 ^ 表示乘方运算)首先求出 各代数余子式A11 = (-1)^2 * (a22 * a33 - a23 * a32) = a22 * a33 - a23 * a32A12 = (-1)^3 * (a21 * a33 - a23 * a31) = -a21 * a33 + a23 * a31A13

= (-1)^4 * (a21 * a32 - a22 * a31) = a21 * a32 - a22 * a31A21 = (-1)^3 * (a12 * a33 - a13 * a32)

= -a12 * a33 + a13 * a32……A33 = (-1)^6 * (a11 * a22 - a12 * a21) = a11 * a22 - a12 * a21然后伴随矩阵就是A11 A21 A31A12 A22 A32A13 A23 A33

伴随矩阵=1 -2 -10 1 20 0 1


扩展资料:

在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对多维矩阵不存在这个规律。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法 。

参考资料来源:

百度百科-伴随矩阵


四阶矩阵的伴随矩阵怎么求

如果n阶矩阵A可逆,则A的伴随矩阵A*=│A│A^(-1)。如果A不可逆,可以用初等变化行或(列)。

先确定一下A的秩,如果:秩(A)<n-1,则A*=0。如果:秩(A)=n-1,只能知道:(A*)=1,要根据定义来求。

扩展资料:

一个m行n列的矩阵简称为m*n矩阵,特别把一个n*n的矩阵成为n阶正方阵,或者n阶矩阵,此外,行列式的阶数与矩阵类似,但是行列式必然为一个正方阵。

说一个矩阵为n阶矩阵,即默认该矩阵为一个n行n列的正方阵。高等代数中常见的可逆矩阵,对称矩阵等问题都是建立在这种正方阵基础上的。

参考资料来源:百度百科-伴随矩阵


伴随矩阵是什么?

指与原矩阵形成映射、类似于逆矩阵。伴随矩阵是矩阵理论及线性代数中的一个基本概念,是许多数学分支研究的重要工具,伴随矩阵的一些新的性质被不断发现与研究。

在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对多维矩阵也存在这个规律。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法 。

扩展资料

伴随矩阵的求法:主对角元素是将原矩阵该元素所在行列去掉再求行列式;非主对角元素,是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以(-1)^(x+y),x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始的。

主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以(-1)^(x+y)=(-1)^(2x)=1,一直是正数,没必要考虑主对角元素的符号问题。

矩阵是高等数学中非常重要的一个概念,而且应用相当广泛,它是线性代数的核心,矩阵的运算、概念和理论贯穿整个线性代数的学习中。

伴随矩阵是一种特殊矩阵,它和矩阵的逆矩阵有着紧密的联系,方阵的伴随矩阵是在求可逆矩阵的逆矩阵时提出来的,是大学数学学习的重点和难点,而且也有很多的应用价值,和数学其他分支的联系也很广泛。

参考资料来源:百度百科—伴随矩阵


伴随矩阵怎么求

公式:AA*=A*A=|A|E。

1.对于二阶方阵求

伴随矩阵

有一个口诀:主对调,副取反。具体来说就是主对角线元素交换位置,副对角线上的元素取其相反数。这是按伴随矩阵的定义得到的。需要注意的一点是伴随矩阵是代数余子式的转置,转置是这个定义的重点,在计算的时候一定不要忘了。

2、为什么叫伴随矩阵呢,在我的个人理解中,已知一个矩阵A,可见我们能够获得的信息也就只有矩阵A本身携带的信息,于是我们所找到的规律矩阵C也是从矩阵A中得出的。我猜,是因为这样,所以叫作伴随矩阵。

3、伴随矩阵是矩阵理论及线性代数中的一个基本概念,是许多数学分支研究的重要工具。由克莱姆法则,到代数余子式和拉普拉斯公式,再到伴随矩阵,大致是这么个路径。很多东西是在矩阵概念出现之前就有了,但名字却是后来再取。

拓展

1、伴随矩阵定义:

在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。

2、二阶矩阵的求法口诀:主对角线对换,副对角线符号相反。


什么是伴随矩阵呢?

指与原矩阵形成映射、类似于逆矩阵。伴随矩阵是矩阵理论及线性代数中的一个基本概念,是许多数学分支研究的重要工具,伴随矩阵的一些新的性质被不断发现与研究。

在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对多维矩阵也存在这个规律。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法 。

相关内容:

当A的秩为n时,A可逆,A*也可逆,故A*的秩为n。

当A的秩为n-1时,根据秩的定义可知,A存在不为0的n-1阶余子式,故A*不等于0,又根据上述公式AA*=0而A的秩小于n-1可知A的任意n-1阶余子式都是0,A*的所有元素都是0,是0矩阵,秩也就是0。


伴随矩阵的定义是什么?

设Aij为元素aij的代数余子式,定义A*=(Aji)为矩阵A的伴随矩阵。

在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式,记作Mₒₑ,将余子式Mₒₑ再乘以-1的o+e次幂记为Aₒₑ,Aₒₑ叫做元素aₒₑ的代数余子式。

一个元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。

计算某一行(或列)的元素代数余子式的线性组合的值时,尽管直接求出每个代数余子式的值,再求和也是可行的,但一般不用此法,其原因是计算量太大,注意到行列式D中元素aij的代数余子式Aji与aij的值无关,仅与其所在位置有关.

扩展资料

当A的秩为n时,A可逆,A*也可逆,故A*的秩为n;

当A的秩为n-1时,根据秩的定义可知,A存在不为0的n-1阶余子式,故A*不等于0,又根据上述公式AA*=0而A的秩小于n-1可知A的任意n-1阶余子式都是0,A*的所有元素都是0,是0矩阵,秩也就是0。

参考资料来源:百度百科-伴随矩阵


本文发布于:2023-02-28 20:23:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/167767331985716.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:伴随矩阵(伴随矩阵的秩与矩阵的秩的关系).doc

本文 PDF 下载地址:伴随矩阵(伴随矩阵的秩与矩阵的秩的关系).pdf

标签:矩阵   关系
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|