史丰收速算法教程(史丰收速算法视频教程)

更新时间:2023-03-01 19:55:27 阅读: 评论:0

史丰收速算法 数字传奇的传奇速算

1、由速算大师史丰收经过10年钻研发明的快速计算法,通过左手五个手指的伸和曲结合大脑的记忆进行运算的方法。这套方法打破人类几千年从低位算起的传统方法,运用进位规律,总结26句口诀,由高位算起,再配合指算,加快计算速度,能瞬间运算出正确结果,协助人类开发脑力,加强思维、分析、判断和解决问题的能力,是当代应用数学的一大创举。

2、史丰收速算法的主要特点如下:从高位算起,由左至右;不用计算工具;不列计算程序;看见算式直接报出正确答案;可以运用在多位数据的加减乘除以及乘方、开方、三角函数、对数等数学运算上,史丰收速算法易学易用,算法是从高位数算起,记着史教授总结了的26句口诀(这些口诀不需死背,而是合乎科学规律,相互连系),用来表示一位数乘多位数的进位规律,掌握了这些口诀和一些具体法则,就能快速进行加、减、乘、除、乘方、开方、分数、函数、对数…等运算。

史丰收速算的什么是史丰收速算法

这一套计算法,1990年由国家正式命名为“史丰收速算法”,现已编入中国九年制义务教育《现代小学数学》课本。联合国教科文组织誉之为教育科学史上的奇迹,应向全世界推广。
史丰收速算法的主要特点如下:
☉从高位算起,由左至右
☉不用计算工具
☉不列计算程序
☉看见算式直接报出正确答案
☉可以运用在多位数据的加减乘除以及乘方、开方、三角函数、对数等数学运算上
○史丰收速算法易学易用,算法是从高位数算起,记着史教授总结了的26句口诀(这些口诀不需死背,而是合乎科学规律,相互连系),用来表示一位数乘多位数的进位规律,掌握了这些口诀和一些具体法则,就能快速进行加、减、乘、除、乘方、开方、分数、函数、对数…等运算。


史丰收的速算法 全文

由速算大师史丰收经过10年钻研发明的快速计算法,是直接凭大脑进行运算的方法,又称为快速心算、快速脑算。这套方法打破人类几千年从低位算起的传统方法,运用进位规律,总结26句口诀,由高位算起,再配合指算,加快计算速度,能瞬间运算出正确结果,协助人类开发脑力,加强思维、分析、判断和解决问题的能力,是当代应用数学的一大创举。

这一套计算法,1990年由国家正式命名为“史丰收速算法”,现已编入中国九年制义务教育《现代小学数学》课本。联合国教科文组织誉之为教育科学史上的奇迹,应向全世界推广。
史丰收速算法的主要特点如下:

⊙从高位算起,由左至右
⊙不用计算工具
⊙不列计算程序
⊙看见算式直接报出正确答案
⊙可以运用在多位数据的加减乘除以及乘方、开方、三角函数、对数等数学运算上

演练实例一

速 算 法 演 练 实 例
Example of Rapid Calculation in Practice
○史丰收速算法易学易用,算法是从高位数算起,记着史教授总结了的26句口诀(这些口诀不需死背,而是合乎科学规律,相互连系),用来表示一位数乘多位数的进位规律,掌握了这些口诀和一些具体法则,就能快速进行加、减、乘、除、乘方、开方、分数、函数、对数…等运算。

□本文针对乘法举例说明
○速算法和传统乘法一样,均需逐位地处理乘数的每位数字,我们把被乘数中正在处理的那个数位称为「本位」,而从本位右侧第一位到最末位所表示的数称「后位数」。本位被乘以后,只取乘积的个位数,此即「本个」,而本位的后位数与乘数相乘后要进位的数就是「后进」。
○乘积的每位数是由「本个加后进」和的个位数即--

□本位积=(本个十后进)之和的个位数
○那么我们演算时要由左而右地逐位求本个与后进,然后相加再取其个位数。现在,就以右例具体说明演算时的思维活动。
(例题) 被乘数首位前补0,列出算式:
0847536×2=1695072
乘数为2的进位规律是「2满5进1」
0×2本个0,后位8,后进1,得1
8×2本个6,后位4,不进,得6
4×2本个8,后位7,满5进1,
8十1得9
7×2本个4,后位5,满5进1,
4十1得5
5×2本个0,后位3不进,得0
3×2本个6,后位6,满5进1,
6十1得7
6×2本个2,无后位,得2

在此我们只举最简单的例子供读者参考,至于乘3、4……至乘9也均有一定的进位规律,限于篇幅,在此未能一一罗列。
「史丰收速算法」即以这些进位规律为基础,逐步发展而成,只要运用熟练,举凡加减乘除四则多位数运算,均可达到快速准确的目的。
>>演练实例二
□掌握诀窍 人脑胜电脑

史丰收速算法并不复杂,比传统计算法更易学、更快速、更准确,史丰收教授说一般人只要用心学习一个月,即可掌握窍门。
对于会计师、经贸人员、科学家们而言,可以提高计算速度,增加工作效益;对学童而言、可以开发智力、活用头脑、帮助数理能力的增强。

参考资料:http://shifengshou.com/gb/htm/what_shifengshou.htm

史丰收速算法这种方法有什么缺点吗??

混淆了数与量的关系,孩子不理解,学不会
史丰收用手指辅助记数和对数字的兴趣及苦练,练出来神奇的指算速度。好多领导和包括华罗庚在内的数学专家看了他的指算速度后非常震惊。又免试到中国科技大学数学系读书,又强制在某些地区推广,结果是不了了之。因为每个人研究的领域是不一样的。笔者认为,史丰收把本来数字笔算加减乘的难度加大了,孩子无法理解,难以掌握。到现在还没有一个学员的运算能力超过史丰收。下面我们分析史丰收速算法创新的三大发明:
第一,就是史丰收的手指记数的方法:该法是史丰收发明的,,没有争议。拳头表示5,五个手指全部伸出表示0。如果孩子用这种方法启蒙,孩子根本不可能接受,还把数的量混淆了。原因是史丰收根本不了解珠算,算盘的横梁以上的一个珠表示5。若史丰收了解算盘,用拇指表示5,也可以用一只手表示0-9十个数字,这样直观好理解。
第二,史丰收说从高位到低位算是他发明的。实际上我们国家几千年的算盘和珠心算就是从高位到低位算的。即使是西洋的笔算除法也是从高位算起的。我们的祖先在进行脑算的时候也是从高位到低位算的。譬如,你买苹果花掉27元,买橘子花掉38元,大多数人脑算是先算20加30,再算7加8的。只有一百多年前从西洋引进的笔算强调是从低位算的。因为笔算的高位一旦记录下来,后面有进位时要改动很麻烦。所以强调从低位到高位算。这说明史丰收不了解中国历史,不知道笔算除法的运算规则。他认为从高位算起是他的发明。但是在笔算加减乘的过程中从高位算起,使笔算的难度大大提高,孩子无法掌握。
第三,史丰收说乘法进位一口清的规律是他发明的,实际上,我们的祖先早已在珠算和珠心算上使用,可能是史丰收不知道珠算而误认为是他的发明。可以网上搜索杨凌云和史丰收就会看到,杨凌云对一口清的规律早就作了总结。
再来看史丰收宣说不用工具,不用程序,不用口诀,那他的伸拇曲凑以及乘法的一口清等又叫什么。

求,小学生数学速算法。

我说加法的,乘法的写不下

加减指数基本类型
诸位在加减指算中须掌握凑数,尾数及补数等概念。指算乃加减运算的基础,初学时可能有点不习惯,切记要反复练习,熟能生巧。
凑数——两数之和等于5,它们互为凑数。如:1和4。
尾数——大于5而小于10的数,都可以分为5和几,这里的几就叫该数的尾数。如:6的尾数为1。
补数——两数之和为10,100,1000……它们互为补数。如:4和6。补数的两数具有前位之和是9,末位之和为10的特点,因此求一个数的补数只要按“前位凑9,末位凑10”即可求出。
为何快速计算法算得快?因在多位数乘多位数中,手指记数占有的功劳何只八成,这也是为何要将手指记数做为一个重点来掌握的原因。
下面乃一些指算的技巧,诸位别认为这些技巧太复杂,这些技巧看似大愚,实则大巧。若能熟练运用,定能运指如飞。
诸位可先掌握加法指算便可,因多位数乘多位数中只用到加法,而减法主要是用在多位数减法和多位数除法中的。
下面的手指记数在下说的不够详细,《快速计算法》中的原文就是这样,在下只补充了几点,有不明的地方还望诸位提出来,看看诸位的悟性如何,诸位切记,需自己思考才有收获,不明的地方请提出来,不是有一个不愿透露姓名的名人说过这么一句话吗——不懂就要问!
1、直加直减类
⑴直加——两数相加,第一加数在0-4或5-9之间而第二加数不超过5,计算时可以直接加上加数而求出和。如6+3,6的内指是4,因此,可直接伸3个手指得到9。下面的题目都可以直加:
0+1(2,3,4,5,)
1+1(2,3,4)
2+1(2,3)
3+1(2)
4+1
5+1(2,3,4,5)
6+1(2,3,4)
7+1(2,3)
8+1(2)
9+1
直加在指算中可归纳为如下口诀:“加看指,够加直加”。
在这里有两点值得注意:
①在直加运算中,由第一加数的内指加上第二加数时,应按“数群”一次屈指或伸指,不要一个手指一个手指的伸和屈。
②在这种类型中,有5+5,6+4,7+3,8+2,9+1两加数恰好互补,其和是10。应脑记十位进1,手示0。
③诸位初学时不必记住上面的题目练习时脑记住十位就行了,个位要留给手指记,这一点必须弄清楚,要练习到加上另一个加数时手指不用大脑去命令,手指就要自己会加。在下说得如此详细,诸位应该知道了吧。
⑵直减——两数相减,被减数在5-1或10-6之间,而减数不超过5,计算时可以直减得到差数。如8-2=?8的外指是3够减去2,因此可直减2而得到6。下面的题目都可直减:
1-1
2-1(2)
3-1(2,3)
4-1(2,3,4)
5-1(2,3,4,5)
6-1
7-1(2)
8-1(2,3)
9-1(2,3,4)
10-1(2,3,4,5)
其中,10-1(2,3,4,5)十位必须先退1(脑记的十位),然后由手指伸屈表示其差。直减指数可以归纳为如下口诀:“减看外指,够减直减”。

2、去补加还补减类
⑴去补加——两数相加,第二加数超过5,不能直接加入。如下列题目:
1+9
2+9(8)
3+9(8,7)
4+9(8,7,6)
6+9
7+9(8)
8+9(8,7)
9+9(8,7,6)
由于6=10-4,7=10-3,8=10-2,9=10-1,指算过程可以变成另一种形式。如:
8+7=8+(10-3)
=10+(8-3)
↓ ↓
进1 去补
8+7可以直接在手上减去3(7的补数),脑记十位进1。
因此,这种类型的指算可归纳成口诀:“直加不够,去补进1”。
⑵还补减——两数相减,减数超5,不能直减。如下列题目:
10-9(8,7,6)
11-9(8,7)
12-9(8)
13-9
15-9(8,7,6)
16-9(8,7)
17-9(8)
18-9
由于-6=-10+4,-7=-10+8,-8=-10+2,-9=-10+1,指算过程可以变成另一种形式。如:
16-7=16-(10-3)
=(16-10)+3
↓ ↓
退1 还补
16-7可以直接把脑记的十位退1后,手上加上3(7的补数)。
因此,这种类型的指算可归纳成口诀:“直减不够,退1还补”。

3、反手加反手减类
⑴反手加。
先研究这样的例子:1+5=6
当手指表示1时,屈1个指,伸4个指;当手指表示6时,屈4个指,伸1个指。
再看7+5=12
当手指表示7时,屈3个指,伸2个指;当手指表示2时,屈2个指,伸3个指。
从这里可以得出一个结论:当一个数加上5,可以由原来手上的手指直接反手得到(把伸的变为屈的,把屈的变为伸的)。不过,拇指由伸变为屈时要进1,因为如果拇指原先是伸的话,那表示的数是大于5的,加5要进1。这种加5的加法比较简单,但它却是其它反手加的基础。
①2+4
3+4(3)
4+4(3,2)
7+4
8+4(3)
9+4(3,2)
上式中由于4=5-1,3=5-2,2=5-3,因此指算过程可以变成另一种形式。如:
3+4=3+(5-1)
=(3+5)-1

直反手凑
3+4可以直接反手后,手上减去1(4的凑数)。
因此,这种类型的指算可归纳成口诀:“去补不够,反手去凑”。
②0+6(7,8,9)
1+6(7,8)
2+6(7)
3+6
5+4(7,8,9)
6+6(7,8)
7+6(7)
8+6
上述中由于6=5+1,7=5+2,8=5+3,9=5+4,因此指算过程可以变成另一种形式。如:
2+7=2+(5+2)
=(2+5)+2

直反手尾
2+7可以直接反手后,手上加上2(7的尾数)。
因此,这种类型的指算可归纳成口诀:“去补不够,反手还尾”。
⑵反手减。
先研究这样的例子:6-5=1
当手指表示6时,屈4个指,伸1个指;当手指表示1时,屈1个指,伸4个指。
再看12-5=7
当手指表示2时,屈2个指,伸3个指;当手指表示7时,屈3个指,伸2个指。
从这里可以得出一个结论:当一个数减去5,可以由原来手上的手指直接反手得到(把伸的变为屈的,把屈的变为伸的)。不过,拇指由屈变为伸时要从前位退1,因为如果拇指原先是屈的话,那表示的数是小于或等于5的,减去5前位要退1。这种减5的减法比较简单,但它却是其它反手减的基础。
①6-4(3,2)
7-4(3)
8-4
11-4(3,2)
12-4(3)
13-4
上式中由于-4=-5+1,-3=-5+2,-2=-5+3,因此指算过程可以变成另一种形式。如:
7-4=7-(5-1)
=(7-5)+1

直反手凑
7-4可以直接反手后,手上加上1(4的凑数)。
因此,这种类型的指算可归纳成口诀:“还补不够,反手去凑”。
②6-6
7-6(7)
8-6(7,8)
9-6(7,8,9)
11-6
12-6(7)
13-6(7,8)
14-6(7,8,9)
上述中由于-6=-5-1,-7=-5-2,-8=-5-3,-9=-5-4,因此指算过程可以变成另一种形式。如:
8-6=8-(5+1)
=(8-5)-1

直反手尾
8-6可以直接反手后,手上减去1(6的尾数)。
因此,这种类型的指算可归纳成口诀:“还补不够,反手去尾”。

公式:
1、直加直减类
加看指,够加直加
减看外指,够减直减
2、去补加还补减类
直加不够,去补进1
直减不够,退1还补
3、反手加反手减类
去补不够,反手去凑
去补不够,反手还尾
还补不够,反手去凑
还补不够,反手去尾
由速算大师史丰收经过10年钻研发明的快速计算法,是直接凭大脑进行运算的方法,又称为快速心算、快速脑算。这套方法打破人类几千年从低位算起的传统方法,运用进位规律,总结26句口诀,由高位算起,再配合指算,加快计算速度,能瞬间运算出正确结果,协助人类开发脑力,加强思维、分析、判断和解决问题的能力,是当代应用数学的一大创举。

这一套计算法,1990年由国家正式命名为“史丰收速算法”,现已编入中国九年制义务教育《现代小学数学》课本。联合国教科文组织誉之为教育科学史上的奇迹,应向全世界推广。
史丰收速算法的主要特点如下:

⊙从高位算起,由左至右
⊙不用计算工具
⊙不列计算程序
⊙看见算式直接报出正确答案
⊙可以运用在多位数据的加减乘除以及乘方、开方、三角函数、对数等数学运算上

演练实例一

□本文针对乘法举例说明
○速算法和传统乘法一样,均需逐位地处理乘数的每位数字,我们把被乘数中正在处理的那个数位称为「本位」,而从本位右侧第一位到最末位所表示的数称「后位数」。本位被乘以后,只取乘积的个位数,此即「本个」,而本位的后位数与乘数相乘后要进位的数就是「后进」。
○乘积的每位数是由「本个加后进」和的个位数即--

□本位积=(本个十后进)之和的个位数
○那么我们演算时要由左而右地逐位求本个与后进,然后相加再取其个位数。现在,就以右例具体说明演算时的思维活动。
(例题) 被乘数首位前补0,列出算式:
0847536×2=1695072
乘数为2的进位规律是「2满5进1」
0×2本个0,后位8,后进1,得1
8×2本个6,后位4,不进,得6
4×2本个8,后位7,满5进1,
8十1得9
7×2本个4,后位5,满5进1,
4十1得5
5×2本个0,后位3不进,得0
3×2本个6,后位6,满5进1,
6十1得7
6×2本个2,无后位,得2

在此我们只举最简单的例子供读者参考,至于乘3、4……至乘9也均有一定的进位规律,限于篇幅,在此未能一一罗列。
「史丰收速算法」即以这些进位规律为基础,逐步发展而成,只要运用熟练,举凡加减乘除四则多位数运算,均可达到快速准确的目的。
>>演练实例二
□掌握诀窍 人脑胜电脑

史丰收速算法并不复杂,比传统计算法更易学、更快速、更准确,史丰收教授说一般人只要用心学习一个月,即可掌握窍门。
对于会计师、经贸人员、科学家们而言,可以提高计算速度,增加工作效益;对学童而言、可以开发智力、活用头脑、帮助数理能力的增强。

参考资料:http://shifengshou.com/gb/htm/what_shifengshou.htm

史丰收速算法易学易用,算法是从高位数算起,记着史教授总结了的26句口诀(这些口诀不需死背,而是合乎科学规律,相互连系),用来表示一位数乘多位数的进位规律,掌握了这些口诀和一些具体法则,就能快速进行加、减、乘、除、乘方、开方、分数、函数、对数…等运算。
概述
乘法是快速计算法的基础。可是,两个多位数相乘,一直是从个位数算起,再到十位,百位……乘数有几位,就得到几排数,然后再从个位加起,最后得出乘积,中间过程繁多,且进位容易出错。
速算乘法运算程序的建立
加法与乘法的运算可以从低位算起,也可以从高位算起,还可以从中间任何一位算起。
例如:345*2
=300*2+40*2+5*2(从高位算起)
=5*2+40*2+300*2(从低位算起)
=40*2+5*2+300*2(从中间任何一位算起)
在日常生活中读写看都是从高位开始,但传统的计算法却是从低位算起,考虑到这种脱节,史丰收产生了乘数也从高位算起的想法,若把读写看算四者统一起来,在实际应用中就方便了。
要实现从高位算起,就必须先弄清“提前进位”的规律,“提前进位”的规律取决于相乘数的个位规律和进位规律的掌握。
我们来看一个普通加法的竖式:
8344
296
543
789
+ 2004
11976
传统算法进位数与前位的个位数完全当成一回事,按前位的个位数来对待,这样便造成错觉,掩盖了加法运算的实质。
我们把“后进”和“本个”分裂开来,写成下面这种形式:
8344
296
543
789
+ 2004
1122 →后位相加的进位(简称为“后进”)
+ 0756 →本位相加的个位(简称为“本个”)
11976
可以看到,和的首位为“后进”,尾位为“本个”,中间各位数都是“后进”加“本个”;又相加数最高位的“本个”为0,尾位的“后进”为0,因此可以说,和的每位数可统一为“后进”加“本个”。
再看一个乘法竖式:
8342
× 4
3110 →“后进”
+ 2268 →“本个”
33368
同加法一样,积的首位为“后进”,尾位为“本个”,中间各位数都是“后进”加“本个”;又相乘数最高位的“本个”为0,尾位的“后进”为0,因此可以说,积的每位数可统一为“后进”加“本个”。由此看来,乘法中积的每位数由高到低,是按由“后进”加“本个”逐位推移的方法运算得到的,因此必须先弄清“提前进位”的规律。而除法是乘法的逆运算,所以乘法是史丰收速算法的基础。
一位数乘多位数
任何一个n位数乘以一位数,结果是一个n位数或n+1位数。例如,2345*3=7035,2345是四位数(n=4),乘以3,结果是四位数(n=4)。又如9999*9=89991,9999是四位数(n=4),乘以9,结果是五位数(n=4+1)。
但第一例中的乘积7035可以在它前面加个0,看成一个五位数07035。做这样的规定后,我们就可以统一地说一个n位数乘以一位数,结果是一个n+1位数。
做了上述的规定后,根据一般乘法规律,我们还可以得出一个结论:多位数乘以一位数时,得数中的第m位数,是由被乘数第m-1位数以及跟这位数的若干位数和乘数而确定的。
例如1757*2=3514按上述规定其积是03514,积的第3位数不是1而是5,它等于被乘数的第二位数7与乘数2相乘所得的个位数4,与7后的数5乘2所得的进位数1相加而得到。
由此可见,要确定乘积中第m位数,关键是要确定进位数,也就是说要找出进位规律来。
下面是乘数分别是2-9的进位规律(求找过程略)
乘数 进位规律
2 满5进1
3 超3进1 超6进2
4 满25进1 满5进2  满75进3
5 满2进1 满4进2 满6进3 满8进4
6 超16进1 超3进2 满5进3 超6进4 超83进5
7 超142857进1 超285714进2 超428571进3  超571428进4 超714285进5 超857142进6
8 满125进1 满25进2 满375进3 满5进4 满625进5 满75进6 满875进7
9 超1进1  超2进2 超3进3 超4进4 超5进5 超6进6 超7进7 超8进8
所谓“满”,是指≥的意思,“满5进一”指≥0.5时,以2乘之进1。
“超”,是指>的意思,“超3进1”指>0.333……时,以3乘之进1。
下面分别介绍乘数为2-9的具体速算法。
乘数为1-9的具体速算法
一.乘数为1
这个大家都会吧!
二.乘数为2
1.积首的确定
满5进1
先确定积的第一位,如果被乘数首位≥5,那么积的首位就是1;反之首位为0(不用写)。
2.“本个”口诀
确定积的其余各位数,以下是口诀: (就是取积的个位数)
1*2=2 2*2=4 3*2=6 4*2=8 5*2=0
6*2=2 7*2=4 8*2=6 9*2=8 0*2=0
例:5843*2=?
被乘数首位是5,所以积的首位就是1。因为积的第2位是由“本个”加“后进”所决定的,而被乘数第一位是5后一位是8,根据口诀5*2=0,“本个”为0,而8>5进1, “后进”为1,所以积的第2位是0+1=1。接下来,8*2=6,而4<5不进,所以积的第3位是6。再4*2=8,后一位3<5,得8。最后一个就是6了。于是我们得出5843*2=11686。

三.乘数为3
1.积首的确定
超3进1 超6进2
先确定积的第一位,如果被乘数首位>33333……而<6666……时,积的首位就是1,如334*3,426562*3等。如果被乘数首位>66666……时,积的首位就是2。
2.“本个”口诀
确定积的其余各位数,以下是口诀:
1*3=3 2*3=6 3*3=9 4*3=2 5*3=5
6*3=8 7*3=1 8*3=4 9*3=7 0*3=0
例:4738*3=?
被乘数首位是4超3,所以积的首位就是1。
被乘数第一位是4,按口诀4*3=2,4后一位是7超6进2,所以积的第2位是4。接下来,7*3=1,因为38超3进1,所以积的第3位是2。3*3=9,后面是8进2,9+2=得1(注:“本个”加“后进”>10时只取个位数)。最后一位是8,8*3=4。
最后我们得出473867*3=14214。

四.乘数为4
1.积首的确定
满25进1 满5进2 满75进3
2.“本个”口诀
确定积的其余各位数,以下是口诀:
1*4=4 2*4=8 3*4=2 4*4=6 5*4=0
6*4=4 7*4=8 8*4=2 9*4=6 0*4=0
例:24657*4=?
被乘数前两位是24<25,所以积的首位就是0(不写)。
被乘数第一位是2,按口诀2*4=8,2后一位是4>25进1,所以积的第2位是9。接下来,4*4=6,因为6>5进2,所以积的第3位是8。6*4=4,后面是5进2,得6。5*4=0,5<7<75进2,得2。7是最后一位,所以积的个位为8。
最后我们得出24657*3=98628。

五.乘数为5
1.积首的确定
满2进1 满4进2 满6进3 满8进4
2.“本个”口诀
确定积的其余各位数,以下是口诀:
“本位”为偶数“本个”得0,“本位”为奇数“本个”得5
例:6732*5=?
被乘数首位是6进3,所以积的首位就是3。被乘数第一位是6为偶数,“本个”得0,后一位是7进3,所以积的第2位是3。接下来,7为奇数“本个”得5,后一位是3进1,所以积的第3位是6。3为奇数“本个”得5,后一位是2进1,所以积的第4位是6。2是最后一位,所以积的个位为0。
最后我们得出6732*5=33660。

六.乘数为6
1.积首的确定
超16进1 超3进2 满5进3 超6进4 超83进5
2.“本个”口诀
确定积的其余各位数,以下是口诀:
1*6=6 2*6=2 3*6=8 4*6=4 5*6=0
6*6=6 7*6=2 8*6=8 9*6=4 0*6=0 例:4792*6=?
被乘数首位是4进2,所以积的首位就是2。被乘数第一位是4,4*6=4,后一位是7进4,所以积的第2位是8。接下来,7*6=2,后一位是9进5,所以积的第3位是7。9*6=4,后一位是2进1,所以积的第4位是5。2是最后一位,所以积的个位为2。
最后我们得出4792*6=28752。

七.乘数为7
1.积首的确定
超142857进1 超285714进2 超428571进3  超571428进4 超714285进5 超857142进6
2.“本个”口诀
确定积的其余各位数,以下是口诀:
1*7=7 2*7=4 3*7=1 4*7=8 5*7=5
6*7=2 7*7=9 8*7=6 9*7=3 0*7=0 例:3792*7=?
被乘数首位是3进2,所以积的首位就是2。被乘数第一位是3,3*7=1,后两位是79>71进5,所以积的第2位是6。接下来,7*7=9,后一位是9进6,所以积的第3位是5。9*7=3,后一位是2进1,所以积的第4位是4。2是最后一位,所以积的个位为4。
最后我们得出4792*7=26544。

八.乘数为8
1.积首的确定
满125进1 满25进2 满375进3 满5进4 满625进5 满75进6 满875进7
2.“本个”口诀
确定积的其余各位数,以下是口诀:
1*8=8 2*8=6 3*8=4 4*8=2 5*8=0
6*8=8 7*8=6 8*8=4 9*8=2 0*8=0 例:4623*8=?
被乘数首位是4进3,所以积的首位就是3。被乘数第一位是4,4*8=2,后两位是623<625进4,所以积的第2位是6。接下来,6*8=8,后两位是23<25进1,所以积的第3位是9。2*8=6,后一位是3进2,所以积的第4位是8。3是最后一位,所以积的个位为4。
最后我们得出4792*7=36984。

九.乘数为9
1.积首的确定
超1进1 超2进2 超3进3 超4进4 超5进5 超6进6 超7进7 超8进8
2.“本个”口诀
确定积的其余各位数,以下是口诀:
1*9=9 2*9=8 3*9=7 4*9=6 5*9=5
6*9=4 7*9=3 8*9=2 9*9=1 0*9=0 例:8746*9=?
被乘数首位是87不超8进7,所以积的首位就是7。被乘数第一位是8,8*9=2,后两位是74不超7进6,所以积的第2位是8。接下来,7*9=3,后两位是46超4进4,所以积的第3位是7。4*9=6,后一位是6超5进5,所以积的第4位是1。6是最后一位,所以积的个位为4。
最后我们得出8746*9=78714。
总练习
分别用2-9去乘675983,每个都要在1分钟内完成。
从被乘数直接找出本个
大家有没有发现,上面乘数分别为2-9求本个中有一个数与众不同,你发现了吗?没错,就是5,它的口诀是这样的:“本位”为偶数“本个”得0,“本位”为奇数“本个”得5,这不是光看被乘数就能直接写出本个吗?如果你在看到本节之前就考虑到这个问题的话,那你——很有才!^_^其实,乘数为2-9都可以光看被乘数就能直接写出本个。

口诀最好背起来,不要嫌口诀又多又难,如果你想学好快速计算法的话就最好背起来,哪些事情不是靠努力才能完成的?世上无难事,只怕有心人。

快速算出两位数乘法的方法

两位数乘法速算技巧原理:设两位数分别为10A B,10C D,其积为S,根据多项式展开:S=(10A B)×(10C D)=10A×10C B×10C 10A×D B×D,而所谓速算,就是根据其中一些相等或互补(相加为十)的关系简化上式,从而快速得出结果.注:下文中"--"代表十位和个位,因为两位数的十位相乘得数的后面是两个零,请大家不要忘了,前积就是前两位,后积是后两位,中积为中间两位,满十前一,不足补零.A.乘法速算一.前数相同的:1.1.十位是1,个位互补,即A=C=1,B D=10,S=(10 B D)×10 A×B方法:百位为二,个位相乘,得数为后积,满十前一.例:13×17 13 7=2--("-"在不熟练的时候作为助记符,熟练后就可以不使用了)3×7=21---221即13×17=221 1.2.十位是1,个位不互补,即A=C=1,B D≠10,S=(10 B D)×10 A×B方法:乘数的个位与被乘数相加,得数为前积,两数的个位相乘,得数为后积,满十前一.例:15×17 15 7=22-("-"在不熟练的时候作为助记符,熟练后就可以不使用了)5×7=35---255即15×17=255 1.3.十位相同,个位互补,即A=C,B D=10,S=A×(A 1)×10 A×B方法:十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积例:56×54(5 1)×5=30--6×4=24--3024 1.4.十位相同,个位不互补,即A=C,B D≠10,S=A×(A 1)×10 A×B方法:先头加一再乘头两,得数为前积,尾乘尾,的数为后积,乘数相加,看比十大几或小几,大几就加几个乘数的头乘十,反之亦然例:67×64(6 1)×6=42 7×4=28 7 4=11 11-10=1 4228 60=4288--4288方法2:两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积.例:67×64 6×6=36--(4 7)×6=66-4×7=28--4288二、后数相同的:2.1.个位是1,十位互补即B=D=1,A C=10 S=10A×10C 101方法:十位与十位相乘,得数为前积,加上101..--8×2=16--101---1701 2.2.不是很简便个位是1,十位不互补即B=D=1,A C≠10 S=10A×10C 10C 10A 1方法:十位数乘积,加上十位数之和为前积,个位为1..例:71×91 70×90=63--70 90=16-1--6461 2.3个位是5,十位互补即B=D=5,A C=10 S=10A×10C 25方法:十位数乘积,加上十位数之和为前积,加上25.例:35×75 3×7 5=26--25--2625 2.4不是很简便个位是5,十位不互补即B=D=5,A C≠10 S=10A×10C 525方法:两首位相乘(即求首位的平方),得数作为前积,两十位数的和与个位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积.例:75×95 7×9=63--(7 9)×5=80-25--7125 2.5.个位相同,十位互补即B=D,A C=10 S=10A×10C B100 B2方法:十位与十位相乘加上个位,得数为前积,加上个位平方.例:86×26 8×2 6=22--36---2236 2.6.个位相同,十位非互补方法:十位与十位相乘加上个位,得数为前积,加上个位平方,再看看十位相加比10大几或小几,大几就加几个个位乘十,小几反之亦然例:73×43 7×4 3=31 97 4=11 3109 30=3139---3139 2.7.个位相同,十位非互补速算法2方法:头乘头,尾平方,再加上头加尾的结果乘尾再乘10例:73×43 7×4=28 92809 (7 4)×3×10=2809 11×30=2809 330=3139---3139三、特殊类型的:3.1、一因数数首尾相同,一因数十位与个位互补的两位数相乘.方法:互补的那个数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补.例:66×37(3 1)×6=24--6×7=42--2442 3.2、一因数数首尾相同,一因数十位与个位非互补的两位数相乘.方法:杂乱的那个数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补,再看看非互补的因数相加比10大几或小几,大几就加几个相同数的数字乘十,反之亦然例:38×44(3 1)*4=12 8*4=32 1632 3 8=11 11-10=1 1632 40=1672--1672 3.3、一因数数首尾互补,一因数十位与个位不相同的两位数相乘.方法:乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补,再看看不相同的因数尾比头大几或小几,大几就加几个互补数的头乘十,反之亦然例:46×75(4 1)*7=35 6*5=30 5-7=-2 2*4=8 3530-80=3450--3450 3.4、一因数数首比尾小一,一因数十位与个手脑速算教程位相加等于9的两位数相乘.方法:凑9的数首位加1乘以首数的补数,得数为前积,首比尾小一的数的尾数的补数乘以凑9的数首位加1为后积,没有十位用0补.例:56×36 10-6=4 3 1=4 5*4=20 4*4=16---2016 3.5、两因数数首不同,尾互补的两位数相乘.方法:确定乘数与被乘数,反之亦然.被乘数头加一与乘数头相乘,得数为前积,尾乘尾,得数为后积.再看看被乘数的头比乘数的头大几或小几,大几就加几个乘数的尾乘十,反之亦然例:74×56(7 1)*5=40 4*6=24 7-5=2 2*6=12 12*10=120 4024 120=4144---4144 3.6、两因数首尾差一,尾数互补的算法方法:不用向第五个那么麻烦了,取大的头平方减一,得数为前积,大数的尾平方的补整百数为后积例:24×36 32 3*3-1=8 6^2=36 100-36=64---864 3.7、近100的两位数算法方法:确定乘数与被乘数,反之亦然.再用被乘数减去乘数补数,得数为前积,再把两数补数相乘,得数为后积(未满10补零,满百进一)例:93×91 100-91=9 93-9=84 100-93=7 7*9=63---8463 B、平方速算一、求11~19的平方同上1.2,乘数的个位与被乘数相加,得数为前积,两数的个位相乘,得数为后积,满十前一例:17×17 17 7=24-7×7=49---289三、个位是5的两位数的平方同上1.3,十位加1乘以十位,在得数的后面接上25.例:35×35(3 1)×3=12--25--1225四、十位是5的两位数的平方同上2.5,个位加25,在得数的后面接上个位平方.例:53×53 25 3=28--3×3=9--2809四、21~50的两位数的平方求25~50之间的两数的平方时,记住1~25的平方就简单了,11~19参照第一条,下面四个数据要牢记:21×21=441 22×22=484 23×23=529 24×24=576求25~50的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0.例:37×37 37-25=12--(50-37)^2=169--1369 C、加减法一、补数的概念与应用补数的概念:补数是指从10、100、1000…中减去某一数后所剩下的数.例如10减去9等于1,因此9的补数是1,反过来,1的补数是9.补数的应用:在速算方法中将很常用到补数.例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等.D、除法速算一、某数除以5、25、125时1、被除数÷5=被除数÷(10÷2)=被除数÷10×2=被除数×2÷10 2、被除数÷25=被除数×4÷100=被除数×2×2÷100 3、被除数÷125=被除数×8÷1000=被除数×2×2×2÷1000在加、减、乘、除四则运算中除法是最麻烦的一项,即使使用速算法很多时候也要加上笔算才能更快更准地算出答案.因本人水平所限,上面的算法不一定是最好的心算法其它由速算大师史丰收经过10年钻研发明的快速计算法,是直接凭大脑进行运算的方法,又称为快速心算、快速脑算.这套方法打破人类几千年从低位算起的传统方法,运用进位规律,总结26句口诀,由高位算起,再配合指算,加快计算速度,能瞬间运算出正确结果,协助人类开发脑力,加强思维、分析、判断和解决问题的能力,是当代应用数学的一大创举.这一套计算法,1990年由国家正式命名为"史丰收速算法",现已编入中国九年制义务教育《现代小学数学》课本.联合国教科文组织誉之为教育科学史上的奇迹,应向全世界推广.史丰收速算法的主要特点如下:⊙从高位算起,由左至右⊙不用计算工具⊙不列计算程序⊙看见算式直接报出正确答案⊙可以运用在多位数据的加减乘除以及乘方、开方、三角函数、对数等数学运算上速算法演练实例Example of Rapid Calculation in Practice○史丰收速算法易学易用,算法是从高位数算起,记着史教授总结了的26句口诀(这些口诀不需速算法26句口诀死背,而是合乎科学规律,相互连系),用来表示一位数乘多位数的进位规律,掌握了这些口诀和一些具体法则,就能快速进行加、减、乘、除、乘方、开方、分数、函数、对数…等运算.□本文针对乘法举例说明○速算法和传统乘法一样,均需逐位地处理乘数的每位数字,我们把被乘数中正在处理的那个数位称为「本位」,而从本位右侧第一位到最末位所表示的数称「后位数」.本位被乘以后,只取乘积的个位数,此即「本个」,而本位的后位数与乘数相乘后要进位的数就是「后进」.○乘积的每位数是由「本个加后进」和的个位数即--□本位积=(本个十后进)之和的个位数○那么我们演算时要由左而右地逐位求本个与后进,然后相加再取其个位数.现在,就以右例具体说明演算时的思维活动.(例题)被乘数首位前补0,列出算式:7536×2=15072乘数为2的进位规律是「2满5进1」7×2本个4,后位5,满5进1,4 1得5 5×2本个0,后位3不进,得0 3×2本个6,后位6,满5进1,6 1得7 6×2本个2,无后位,得2

本文发布于:2023-02-28 20:22:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/167767172785115.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:史丰收速算法教程(史丰收速算法视频教程).doc

本文 PDF 下载地址:史丰收速算法教程(史丰收速算法视频教程).pdf

标签:速算   视频教程   教程
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|