求导数(求导数的软件)

更新时间:2023-03-01 19:29:13 阅读: 评论:0

导数怎么求?

、导数的定义
设函数y=f(x)在点x=x0及其附近有定义,当自变量x在x0处有改变量△x(△x可正可负),则函数y相应地有改变量△y=f(x0+△x)-f(x0),这两个改变量的比叫做函数y=f(x)在x0到x0+△x之间的平均变化率.
如果当△x→0时,有极限,我们就说函数y=f(x)在点x0处可导,这个极限叫做f(x)在点x0处的导数(即瞬时变化率,简称变化率),记作f′(x0)或,即
函数f(x)在点x0处的导数就是函数平均变化率当自变量的改变量趋向于零时的极限.如果极限不存在,我们就说函数f(x)在点x0处不可导.
2、求导数的方法
由导数定义,我们可以得到求函数f(x)在点x0处的导数的方法:
(1)求函数的增量△y=f(x0+△x)-f(x0);
(2)求平均变化率;
(3)取极限,得导数
3、导数的几何意义
函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率f′(x0).
相应地,切线方程为y-y0=
f′(x0)(x-x0).
4、几种常见函数的导数
函数y=C(C为常数)的导数
C′=0.
函数y=xn(n∈Q)的导数
(xn)′=nxn-1
函数y=sinx的导数
(sinx)′=cosx
函数y=cosx的导数
(cosx)′=-sinx
5、函数四则运算求导法则
和的导数
(u+v)′=u′+v′
差的导数
(u-v)′=
u′-v′
积的导数
(u·v)′=u′v+uv′
商的导数
.
6、复合函数的求导法则
一般地,复合函数y=f[φ(x)]对自变量x的导数y′x,等于已知函数对中间变量u=φ(x)的导数y′u,乘以中间变量u对自变量x的导数u′x,即y′x=y′u·u′x.
7、对数、指数函数的导数
(1)对数函数的导数
①;
②.公式输入不出来
其中(1)式是(2)式的特殊情况,当a=e时,(2)式即为(1)式.
(2)指数函数的导数
①(ex)′=ex
②(ax)′=axlna
其中(1)式是(2)式的特殊情况,当a=e时,(2)式即为(1)式.
导数又叫微商,是因变量的微分和自变量微分之商;给导数取积分就得到原函数(其实是原函数与一个常数之和)。

请问如何求导数

怎么求导数?呆哥给你解答一下:

求导的重难点在于求导本质的把握和基本方法的熟能生巧。知识点概要:

1、 基本求导公式【8个】

2、 求导的运算法则

3、 复合函数求导【考点】

4、 求导的意义

5、 求函数在点(x0,y0)的切线方程【考点】

知识点一:基本求导公式【8 个】

记忆技巧:8 个公式正好按照高一基本初等函数学习顺序

分布:指数、对数、幂函数、三角函数各两个。 你要记的其实就是指数对数幂函数【标红】这 3 个公式。

知识点二:求导的运算法则知识点三:复合函数求导【考点】

如果你觉得复合函数求导难,那么你就把下面的 4个步骤记熟,并掌握下面的两个例子即可。

复合函数求导 4步骤:

1、 复合函数分解

2、 分解函数单独求导

3、 分解框填充

4、 分解函数合并【全部乘起来】

知识点四:求导的意义知识点五:求函数在点(x0 , y0 ) 的切线方程【考点】

希望呆哥数学的回答能帮助到你~


怎么求导数公式

求导数公式的方法如下:

(1)求函数y=f(x)在x0处导数的步骤:

① 求函数的增量Δy=f(x0+Δx)-f(x0)

② 求平均变化率

③ 取极限,得导数。

(2)几种常见函数的导数公式:

① C'=0(C为常数);

② (x^n)'=nx^(n-1) (n∈Q);

③ (sinx)'=cosx;

④ (cosx)'=-sinx;

⑤ (e^x)'=e^x;

⑥ (a^x)'=a^xIna (ln为自然对数)

⑦ loga(x)'=(1/x)loga(e)

(3)导数的四则运算法则:

①(u±v)'=u'±v'

②(uv)'=u'v+uv'

③(u/v)'=(u'v-uv')/ v^2

④[u(v)]'=[u'(v)]*v' (u(v)为复合函数f[g(x)])

(4)复合函数的导数:复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。

导数的定义:

导数,也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量。


函数求导数的方法

利用导数定义求函数的导数是学习导数的第一步,其中涉及极限的相关运算。小编就带大家看看如何利用导数定义求一些基本函数的导数。

开启分步阅读模式
操作方法
01
使用导数定义求解导数的步骤主要分为三个步骤。这里以幂函数y=x^n为例说明。

02
第一步,求出因变量的增量Δy=f(x+Δ)-f(x)。

03
第二步,计算Δy与Δx的比值。

04
第三步,求极限,令Δx趋近于0,可以求得极限。

05
幂函数的求解比较简单。对于一些其他较复杂的函数,还需要借=借助一些数学公式以及极限运算。例如对于y=sin(x)的求解,就需要利用和差化积公式与
lim(x->0){sin(x)/x}=1这两个公式。

06
同样,首先计算增量Δy=f(x+Δ)-f(x)。

07
接下来的两步可以一同进行。

08
以下是常用的一些导数公式,大家可以试着去推导一下。导数公式的计算,需要使用大量极限计算的技巧,希望大家多多训练。
  导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。小编整理了求导数的方法,供参考!

  一、总论

  一般来说,导数的大题有两到三问。每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。

  二、主流题型及其方法

  (1)求函数中某参数的值或给定参数的值求导数或切线

  一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x=k时取得极值,试求所给函数中参数的值;或者是f(x)在(a,f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:

  先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x=k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。

  注意:

  ①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。

  ②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。所以做两个字来概括这一类型题的方法就是:淡定。别人送分,就不要客气。

  ③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。切线要写成一般式。

  (2)求函数的单调性或单调区间以及极值点和最值

  一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。一般来说,由于北京市高考不要求二阶导数的计算,所以这类题目也是送分题,所以做这类题也要淡定。这类问题的方法是:

  首先写定义域,求函数的导函数,并且进行通分,变为假分式形式。往下一般有两类思路,一是走一步看一步型,在行进的过程中,一点点发现参数应该讨论的范围,一步步解题。这种方法个人认为比较累,而且容易丢掉一些情况没有进行讨论,所以比较推荐第二种方法,就是所谓的一步到位型,先通过观察看出我们要讨论的参数的几个必要的临介值,然后以这些值为分界点,分别就这些临界点所分割开的区间进行讨论,这样不仅不会漏掉一些对参数必要的讨论,而且还会是自己做题更有条理,更为高效。

  极值的求法比较简单,就是在上述步骤的基础上,令导函数为零,求出符合条件的根,然后进行列表,判断其是否为极值点并且判断出该极值点左右的单调性,进而确定该点为极大值还是极小值,最后进行答题。

  最值问题是建立在极值的基础之上的,只是有些题要比较极值点与边界点的大小,不能忘记边界点。

  注意:

  ①要注意问题,看题干问的是单调区间还是单调性,极大值还是极小值,这决定着你最后如何答题。还有最关键的,要注意定义域,有时题目不会给出定义域,这时就需要你自己写出来。没有注意定义域问题很严重。

  ②分类要准,不要慌张。

  ③求极值一定要列表,不能使用二阶导数,否则只有做对但不得分的下场。

  (3)恒成立或在一定条件下成立时求参数范围

  这类问题一般都设置在导数题的第三问,也就是最后一问,属于有一定难度的问题。这就需要我们一定的综合能力。不仅要对导数有一定的理解,而且对于一些不等式、函数等的知识要有比较好的掌握。这一类题目不是送分题,属于扣分题,但掌握好了方法,也可以百发百中。方法如下:

  做这类恒成立类型题目或者一定范围内成立的题目的核心的四个字就是:分离变量。一定要将所求的参数分离出来,否则后患无穷。有些人总是认为不分离变量也可以做。一些简单的题目诚然可以做,但到了真正的难题,分离变量的优势立刻体现,它可以规避掉一些极为繁琐的讨论,只用一些简单的代数变形可以搞定,而不分离变量就要面临着极为麻烦的讨论,不仅浪费时间,而且还容易出差错。所以面对这样的问题,分离变量是首选之法。当然有的题确实不能分离变量,那么这时就需要我们的观察能力,如果还是没有简便方法,那么才会进入到讨论阶段。

求导数应该怎么算呢?

先求函数f(x)=a^x(a>0,a≠1)的导数

f'(x)=lim[f(x+h)-f(x)]/h(h→0)

=lim[a^(x+h)-a^x]/h(h→0)

=a^x lim(a^h-1)/h(h→0)

对lim(a^h-1)/h(h→0)求极限,得lna

∴f'(x)=a^xlna

即(a^x)'=a^xlna

当a=e时,∵ln e=1

∴(e^x)'=e^x

扩展资料

导数的求导法则

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合

2、两个函数的乘积的导函数:一导乘二+一乘二导

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方

4、如果有复合函数,则用链式法则求导。


怎样求导数?

1. 常函数即常数y=c(c为常数),y'=0 。

2. 幂函数y=x^n,y'=n*x^(n-1)(n∈R) 。

3. 基本导数公式3指数函数y=a^x,y'=a^x * lna。

4. 对数函数y=logaX,y'=1/(xlna) (a>0且a≠1,x>0)。

拓展资料:

导数是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。

几何意义:

函数y=fx在x0点的导数f'x0的几何意义表示函数曲线在P0[x导数的几何意义0fx0] 点的切线斜率,导数的几何意义是该函数曲线在这一点上的切线斜率。


本文发布于:2023-02-28 20:20:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/167767015281487.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:求导数(求导数的软件).doc

本文 PDF 下载地址:求导数(求导数的软件).pdf

上一篇:学信网注册
下一篇:返回列表
标签:导数   软件
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|