反函数求导
反函数的求导法则是:反函数的导数是原函数导数的倒数。
例题:求y=arcsinx的导函数。 首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin’y=1/cosy
因为x=siny,所以cosy=√1-x2
所以y‘=1/√1-x2。
同理可以求其他几个反三角函数的导数。所以以后在求涉及到反函数的导数时,先将反函数求出来,只是这里的反函数是以x为因变量,y为自变量,这个要和我们平时的区分开。最后将y想法设法换成x即可。
扩展资料:
一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= g(y). 若对于y在C反函数中的任何一个值,通过x= g(y),x在A中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量是y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1) (x) 反函数y=f^(-1) (x)的定义域、值域分别是函数y=f(x)的值域、定义域。
反函数的导数是什么?
反函数的求导法则是:反函数的导数是原函数导数的倒数。
例题:求= arcsinx的导函数。首先, 函数y= arcsinx的反函数为x=siny ,所以: y '=1/sin' y= 1/cosy因为x=siny ,所以cosy=V1-x2;所以y '=1/v1-x2。
原函数的导数等于反函数导数的倒数设y=f (x)。其反函数为x=g (v)可以得到微分关系式: dy= (df/ dx) dx, dx= (dg/ dy) dy。
那么,由导数和微分的关系我们得到:
原函数的导数是df/ dx=dy/ dx。
反函数的导数是dg/ dy=dx/ dy。
所以,可以得到df/ dx=1/ (dg/ dx)。
1、反函数的定义域是原函数的值域,反函数的值域是原函数的定义域。
2、互为反函数的两个函数的图像关于直线y=x对称。
3、原函数若是奇函数,则其反函数为奇函数。
4、若函数是单调函数,则-定有反函数,且反函数的单调性与原函数的一致。
5、原函数与反函数的图像若有交点,则交点-定在直线y=x上或关于直线y=x对称出现。
如何求反函数的导数?
反函数的求导法则是:反函数的导数是原函数导数的倒数。
如果函数x=f(y)在区间Iy内单调、可导且f′(y)≠0,那么它的反函数y=f−1(x)在区间Ix=
{x|x=f(y),y∈Iy}内也可导,且[f−1(x)]′=1f′(y)或dydx=1dxdy
这个结论可以简单表达为:反函数的导数等于直接函数导数的倒数。
例:
设x=siny,y∈[−π2,π2]
为直接导数,则y=arcsinx是它的反函数,求反函数的导数。
解:函数x=siny在区间内单调可导,f′(y)=cosy≠0
因此,由公式得
(arcsinx)′=1(siny)′=1cosy=11−sin2y−−−−−−−−√=11−x2−−−−−√
一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= g(y).
若对于y在C反函数中的任何一个值,通过x= g(y),x在A中都有唯一的值和它对应,那么,x=
g(y)就表示y是自变量,x是因变量是y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)
(x) 反函数y=f^(-1) (x)的定义域、值域分别是函数y=f(x)的值域、定义域。
如何求反函数求导?
反函数的求导法则是:反函数的导数是原函数导数的倒数。
例题:求y=arcsinx的导函数。 首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin’y=1/cosy
因为x=siny,所以cosy=√1-x2
所以y‘=1/√1-x2。
同理可以求其他几个反三角函数的导数。所以以后在求涉及到反函数的导数时,先将反函数求出来,只是这里的反函数是以x为因变量,y为自变量,这个要和我们平时的区分开。最后将y想法设法换成x即可。
扩展资料:
一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= g(y). 若对于y在C反函数中的任何一个值,通过x= g(y),x在A中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量是y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1) (x) 反函数y=f^(-1) (x)的定义域、值域分别是函数y=f(x)的值域、定义域。
反函数导数怎么求?
y=arcsinx y'=1/√(1-x^2)
反函数的导数:
y=arcsinx,
那么,siny=x,
求导得到,cosy *y'=1
即 y'=1/cosy=1/√[1-(siny)^2]=1/√(1-x^2)
扩展资料:
引用的常用公式
在推导的过程中有这几个常见的公式需要用到:
⒈(链式法则)y=f[g(x)],y'=f'[g(x)]·g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』
2. y=u*v,y'=u'v+uv'(一般的leibniz公式)
3.y=u/v,y'=(u'v-uv')/v^2,事实上4.可由3.直接推得
4.(反函数求导法则)y=f(x)的反函数是x=g(y),则有y'=1/x'
参考资料:导数表-百度百科
反函数的导数
原函数的导数等于反函数导数的倒数。
设y=f(x),其反函数为x=g(y),
可以得到微分关系式:dy=(df/dx)dx ,dx=(dg/dy)dy ,
那么,由导数和微分的关系我们得到,
原函数的导数是 df/dx = dy/dx,
反函数的导数是 dg/dy = dx/dy ,
所以,可以得到 df/dx = 1/(dg/dx) 。
扩展资料:
一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y) 。反函数x=f-1(y)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。
一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f-1(y)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的是函数幂,但不是指数幂。
本文发布于:2023-02-28 20:19:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167766940384202.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:反函数求导(反函数求导法则).doc
本文 PDF 下载地址:反函数求导(反函数求导法则).pdf
留言与评论(共有 0 条评论) |