证明勾股定理的16种方法
证明勾股定理的16种方法如下:
1、证法一(邹元治证明);
2、证法二(课本的证明);
3、证法三(赵爽弦图证明;
4、证法四(总统证明);
5、证法五(梅文鼎证明);
6、证法六(项明达证明;
7、证法七(欧几里得证明);
8、证法八(相似三角形性质证明);
9、证法九(杨作玫证明);
10、证法十(李锐证明);
11、证法十一(利用切割线定理证明);
12、证法十二(利用多列米定理证明);
13、证法十二(利用多列米定理证明);
14、证法十四(利用反证法证明);
15、证法十五(辛卜松证明);
16、证法十六(陈杰证明)。
勾股定理怎么证明呢?
简单的勾股定理的证明方法如下:
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形。
发现四个直角三角形和一个边长为a的正方形和一个边长为b的正方形,刚好可以组成边长为(a+b)的正方形;四个直角三角形和一个边长为c的正方形也刚好凑成边长为(a+b)的正方形。
所以可以看出以上两个大正方形面积相等。 列出式子可得:
拓展资料:
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
参考资料:勾股定理_百度百科
勾股定理的证明方法
勾股定理的证明方法
勾股定理的多种证明方法
勾股定理的10种证明方法:课本上的证明
勾股定理的10种证明方法:邹元治证明
勾股定理的10种证明方法:赵爽证明
勾股定理的10种证明方法:1876年美国总统Garfield证明
勾股定理的10种证明方法:项明达证明
勾股定理的10种证明方法:欧几里得证明
勾股定理的10种证明方法:杨作玫证明
勾股定理的10种证明方法:切割定理证明
勾股定理的10种证明方法:直角三角形内切圆证明
勾股定理的10种证明方法:反证法证明
扩展资料:
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。
勾股数组是满足勾股定理的正整数组,其中的称为勾股数。例如就是一组勾股数组。任意一组勾股数可以表示为如下形式:,,,其中均为正整数,且。
定理用途:已知直角三角形两边求解第三边,或者已知三角形的三边长度,证明该三角形为直角三角形或用来证明该三角形内两边垂直。利用勾股定理求线段长度这是勾股定理的最基本运用。
意义:
1.勾股定理的证明是论证几何的发端;
2.勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;
3.勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;
4.勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理。
勾股定理证明的方法
本文发布于:2023-02-28 20:18:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167766915881129.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:勾股定理的证明方法(勾股定理的证明方法有多少种).doc
本文 PDF 下载地址:勾股定理的证明方法(勾股定理的证明方法有多少种).pdf
留言与评论(共有 0 条评论) |