正交试验设计(正交试验设计三因素三水平)

更新时间:2023-03-01 19:11:18 阅读: 评论:0

正交实验设计的基本步骤

正交试验设计,是指研究多因素多水平的一种试验设计方法。根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备均匀分散,齐整可比的特点。正交试验设计是分式析因设计的主要方法。当试验涉及的因素在3个或3个以上,而且因素间可能有交互作用时,试验工作量就会变得很大,甚至难以实施。针对这个困扰,正交试验设计无疑是一种更好的选择。正交试验设计的主要工具是正交表,试验者可根据试验的因素数、因素的水平数以及是否具有交互作用等需求查找相应的正交表,再依托正交表的正交性从全面试验中挑选出部分有代表性的点进行试验,可以实现以最少的试验次数达到与大量全面试验等效的结果,因此应用正交表设计试验是一种高效、快速而经济的多因素试验设计方法。

正交实验设计的基本步骤
(1)明确实验目的,确定评价指标
(2)挑选因素,确定水平
(3)选正交表,进行表头设计
(4)明确实验方案,进行实验,得到结果
(5)对实验结果进行统计分析
(6)进行验证实验,作进一步分析

正交试验设计的基本特点

先了解几个术语:
因素,作为试验研究过程的自变量,常常是造成试验指标按某种规律发生变化的那些原因;
水准,试验中因素所处的具体状态或情况,又称为等级 ;
[例1]为提高某打印机的打印速率,选择了三个有关因素进行条件 试验,温度(X),反应时间(Y),耗墨量(Z),并确定了它们的试验范围:
X:10-20℃
Y:5-10秒钟
Z:5-7%
试验目的是搞清楚因素X、Y、Z对打印速率有什么影响,哪些因素是主要的,哪些是次要的,从而确定最适合的生产条件,即温度、时间及用耗墨量各为多少才能使打印速率高。
如何安排试验?
1,全组合方法
取三个因素所有水准之间的组合,即x0y0z0,x0y0z1,x0y1z0, ……,x1y1z1,共有23 =8次试验 用图表示就是图1 立方体的8个节点。这种试验法称做全面试验法。
优缺点:
考虑了所有可能的因素。当因素的数目比较多,每个因素的水准数目也多时。试验量会大得惊人。如选六个因素,每个因素取五个水准时,如果要做全面试验,则需56 =15625次试验,这规模就相当大,造成严重的资源浪费。
先了解几个术语:
因素,作为试验研究过程的自变量,常常是造成试验指标按某种规律发生变化的那些原因;
水准,试验中因素所处的具体状态或情况,又称为等级 ;
[例1]为提高某打印机的打印速率,选择了三个有关因素进行条件 试验,温度(X),反应时间(Y),耗墨量(Z),并确定了它们的试验范围:
X:10-20℃
Y:5-10秒钟
Z:5-7%
试验目的是搞清楚因素X、Y、Z对打印速率有什么影响,哪些因素是主要的,哪些是次要的,从而确定最适合的生产条件,即温度、时间及用耗墨量各为多少才能使打印速率高。
如何安排试验?
1,全组合方法
取三个因素所有水准之间的组合,即x0y0z0,x0y0z1,x0y1z0, ……,x1y1z1,共有23 =8次试验 用图表示就是图1 立方体的8个节点。这种试验法称做全面试验法。
优缺点:
考虑了所有可能的因素。当因素的数目比较多,每个因素的水准数目也多时。试验量会大得惊人。如选六个因素,每个因素取五个水准时,如果要做全面试验,则需56 =15625次试验,这规模就相当大,造成严重的资源浪费。

2,简单对比法
简单对比法,即变化一个因素而固定其他因素,如首先固定Y、Z于y0、z0,使X变化之:
↗x0
y0z0 →x1(好结果)
如得出结果x1最好,则固定X于x1,Z还是z0,使Y变化之:
↗y0
x1z0 →y1 (好结果)
得出结果以y1为最好,则固定Y于y1,X于x1,使Z变化之:
↗z0
x1y1→z1 (好结果)
试验结果以z1最好。于是就认为最好的组合是x1y1z1。
优缺点:
简单对比法的最大优点就是试验次数少,例如六因素五水准试验,在不重复时,只用5+(6-1)×(5-1)=5+5×4=25次试验就可以了。 但缺点很多。首先这种方法的选点代表性很差,如按上述方法进行试验,试验点完全分布在一个角上,而在其他一个很大的范围内没有选点。因此这种试验方法不全面,所选的组合x2y2z2不一定是8个组合中最好的。其次,用这种方法比较条件好坏时,只是把单个的试验数据拿来,进行数值上的简单比较,而试验数据中必然要包含着误差成分,所以单个数据的简单比较不能剔除误差的干扰,必然造成结论的不准确。

3,正交实验法
正交表是运用组合数学理论构造的一种规格化的表格,特点如下:
【整齐可比性】:每一列中所有数字出现的次数是相等的
【均衡分散性】:任意两列间横向组合的数字对搭配次数也是相等的
特征:参考【例1】【图1】,与因素X (包含水准x0、x1)对应的有(x0yz)和(x1yz)二个平面,同样对于Y、Z也各有二个平面,共6个平面。则在选择试验点时,这6个平面上的试验点都应当一样多,即对每个因素的每个水准我们都要同等看待。(讨论)
结论:在6个平面中每个平面上都恰好有2个点而每个平面的每条直线都有一个点,而且只有一个点,总共4个点。这样的试验方案,试验点的分布很均匀,试验次数也不多。

正交试验设计作用

选择正交实验设计对选择实验进行设计,其原因除了有一般试验设计所具有的意义之外,正交实验设计还具有如下较为特殊的意义:
第一,对属性的个数NF没有严格的限制,NF≥1即可;
第二,属性之间有、无交互作用均可利用此设计;
第三,利用正交设计从多种水平组合中一下挑出具有代表性的试验点进行试验,不仅比全因子试验设计大大减少了试验次数,而且通过综合分析,可以把好的试验点(即使不包括在正交设计中)找出来;
第四,利用正交设计的试验,可以满足选择实验对于真实性的要求,即使除了研究的属性之外其他属性改变,所研究的属性效应也能保持一贯;即使把规模条件改变,其效应也能再现。

正交实验如何设计

正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。是一种高效率、快速、经济的实验设计方法。日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。例如作一个三因素三水平的实验,按全面实验要求,须进行3的3次方=27 种组合的实验,且尚未考虑每一组合的重复数。若按L9(3)3 正交表按排实验,只需作9 次,按L18(3)7 正交表进行18 次实验,显然大大减少了工作量。因而正交实验设计在很多领域的研究中已经得到广泛应用。(汗,这里不能打出来正确的表达,反正学这个的都知道具体的写法)
正交表是一整套规则的设计表格,L 为正交表的代号,n 为试验的次数,t为水平数,c 为列数,也就是可能安排最多的因素个数。例如L9(34),它表示需作9次实验,最多可观察4 个因素,每个因素均为3 水平。一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(4×24) ,此表的5 列中有1 列为4 水平,4 列为2水平。根据正交表的数据结构看出,正交表是一个n 行c 列的表,其中第j 列由数码1,2,… Sj 组成,这些数码均各出现N/S 次,例如表11 中,第二列的数码个数为3,S=3 ,即由1、2、3 组成,各数码均出现N/3=9/3=3次。

正交实验设计方法

正交实验设计方法是研究与处理多因素实验的一种科学方法。它最早产生于 20 世纪20 年代英国罗隆姆斯特农业实验站 ( 侯化国等,1985) ,后来由日本田口玄一博士在 50年代编制出正交实验表,60 年代初从日本传入中国。它依据 Galois 理论导出的正交表,从大量实验条件中挑选出适量、有代表性的条件来合理地安排实验,被称为国际标准型正交实验法。

正交表是运用组合数学理论构造的一种规格化的表格,通常有两种表达形式,一种是非交互性的正交表,另一种是交互性的正交表。下面只简单介绍第一种正交表,其通用符号可以表示为:

Ln( ji)

式中: L———正交表符号;

n———正交表的行数 ( 实验次数或实验方案数) ;

j———正交表中的数码 ( 因素的水平数或称位级数) ;

i———正交表的列数 ( 实验因素的个数) 。

举例来说,某工厂想提高某种产品的质量或产量,对工艺中 3 个主要因素各按 3 个水平进行实验 ( 表 5. 1) ,以寻求最适宜的操作条件。

表 5. 1 3 因素与 3 水平的选择

那么,很容易想到的是全面搭配法方案,如图 5. 1 所示。此方案数据点分布的均匀性极好,因素和水平的搭配十分全面,唯一的缺点是实验次数多达 33= 27 次 ( 指数 3 代表3 个因素,底数 3 代表每个因素有 3 个水平) 。因素、水平数愈多,则实验次数愈多。例如,做一个 6 因素 3 水平的实验,就需 36= 729 次实验,显然在人力、物力和时间上都难以做到,而且付出的经济代价也高得多。因此,需要寻找一种合适的实验设计方法。

图 5. 1 全面搭配法方案

如果采用简单比较法方案,即先固定 p1和 T1,只改变 t,观察因素 t 不同水平的影响,做了如图 5. 2 ( 1) 所示的 3 次实验,发现 t = t2时的实验效果最好 ( 好的用 □ 表示) ,所得产品的产量最高,因此认为在后面的实验中因素 t 应取 t2水平。然后固定 p1和t2,改变 T 的 3 次实验,如图 5. 2 ( 2) 所示,发现 T = T3时的实验效果最好,因此认为因素 T 应取 T3水平。最后固定 T3和 t2,改变 p 的 3 次实验,如图 5. 2 ( 3) 所示,发现因素p 宜取 p2水平。

图 5. 2 简单比较法方案

因此可以得出结论: 为提高所得产品的产量,最适宜的操作条件为 p2、T3、t2。与全面搭配法方案相比,简单比较法方案的优点是实验次数减少,只需做 9 次实验。但必须指出,简单比较法方案的实验结果是不可靠的。因为: ①在改变 t 值 ( 或 T 值,或 p 值) 的3 次实验中,说 t2( 或 T3或 p2) 水平最好是有条件的,在 p≠p1,T≠T1时,t2水平不是最好的可能性是存在的; ②在改变 t 的 3 次实验中,固定p = p2,T = T3,应该说也是可以的,是随意的,故在此方案中数据点分布的均匀性是毫无保障的; ③用这种方法比较条件好坏时,只是对单个的实验数据进行数值上的简单比较,不能排除必然存在的实验数据误差的干扰。

运用正交实验设计方法,不仅兼有上述两个方案的优点,而且实验次数少,数据点分布均匀 ( 图 5. 3) ,结果的可靠性也好。正交实验设计方法是用正交表来安排实验的,对于上述实例适用的正交表是 L9( 34) ,其实验安排见表 5. 2。

图 5. 3 正交实验法方案

表 5. 2 L9( 34) 正交实验安排

选择 L9( 34) 正交表是因为在 3 水平的正交表中,常用的有 L9( 34) 和 L27( 313)等,由于3 水平正交表中不存在3 因素3 水平的正交表,即不能完全 “对号入座”。所以,只有选用 L9( 34) 才能放下 3 因素。虽然空闲一列,但该表较之其他各表实验次数最少。我们选择此正交表共进行 9 次试验,它是从可能进行搭配的 34= 81 次实验中一次挑出来的,只要条件许可,还可以同时进行实验。

所有的正交表与 L9( 34) 正交表一样,都具有以下两个特点:

1) 在每一列中,各个不同数字出现的次数相等,即具有整齐可比性。在表 L9( 34)中,每一列有 3 个水平,水平 1、2、3 都是各出现 3 次。

2) 表中任意两列间横向组合的数字对搭配次数也是相等的,即具有均匀分散性。在表 L9( 34) 中,任意两列间横向组合在一起形成的数字对共有 9 个: ( 1,1) , ( 1,2) ,( 1,3) ,( 2,1) ,( 2,2) ,( 2,3) ,( 3,1) ,( 3,2) ,( 3,3) ,每一个数字对各出现一次。

这两个特点称为正交性。正是由于正交表具有上述特点,保证了用正交表安排的实验方案中因素水平是均衡搭配的,数据点的分布是均匀的。因素、水平数越多,运用正交实验设计方法,越能显示出它的优越性,如上述提到的 6 因素 3 水平实验,用全面搭配方案需 729 次,若用正交表 L27( 313) 来安排,则只需做 27 次实验。

在工农业生产中,因素之间常有交互作用。当上述的因素 p 的数值和水平发生变化时,实验指标随因素 T 变化的规律也发生变化; 或反过来,因素 T 的数值和水平发生变化时,实验指标随因素 p 变化的规律也发生变化。这种情况称为因素 p、T 间有交互作用,记为 p × T,那么就要选取交互性正交表,这方面的内容此处不再赘述,需要时可以查阅相关参考书。

正交表设计时遵循以下步骤:

1) 明确实验目的,确定考核指标。

2) 挑因素,选水平,确定因素水平表。

3) 选择适宜的正交表; 原则上被选用正交表的因子数与水平数等于或大于要进行实验考察的因子数与水平数,并且使实验次数最少。

4) 因素水平上正交表,确定实验方案,并按实验方案进行实验。

5) 实验结果分析。


正交试验设计的概述

日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。例如作一个三因素三水平的实验,按全面实验要求,须进行3^3 = 27种组合的实验,且尚未考虑每一组合的重复数。若按L9(3)正交表安排实验,只需作9次,按L18(3)正交表进行18次实验,显然大大的减少了工作量。因而正交实验设计在很多领域的研究中已经得到广泛应用。
正交表是一整套规则的设计表格,用 L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。例如L9(3^4)它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(41×24),此表的5列中,有1列是为4水平,4列为2水平。


本文发布于:2023-02-28 20:18:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/167766907881103.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:正交试验设计(正交试验设计三因素三水平).doc

本文 PDF 下载地址:正交试验设计(正交试验设计三因素三水平).pdf

标签:正交   因素   水平
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|