spss假设检验(spss假设检验结果分析)

更新时间:2023-03-01 19:02:42 阅读: 评论:0

SPSS中的均值比较—假设检验

前一段时间给大家整体的分享了关于如何使用SPSS来进行描述性统计分析,当时一共是分了三节内容,不知道大家有没有在空闲的时间好好的练习掌握一下。

在给大家分享完关于描述性统计分析的章节以后,我们接下来会用一段时间来给大家分享一下关于如何用SPSS来进行均值比较。关于均值比较在SPSS中是一个比较常见的分析方法,在这里面最常见的方法就是T检验,分别有单样本T检验、独立样本T检验和配对样本T检验。在学习这些检验方法之前,我们首选需要了解假设检验这个概念,因为不仅仅是在均值比较中,在后面的其他分析中我们也是随时会用到假设检验的思想。

假设检验的理论及原理

假设某个企业生产一种电子元件,在进行抽检的时候,企业的质检员说该企业的产品故障率只有千分之一。但是我们在检验的时候发现,从1000个电子元件中随机拿出来了5个,调试以后发现其中有2个发生了故障。这说明什么呢?

其实,如果企业的质检员说的确实是正确的,那照理来说1000个电子原件中应该只有1个会发生故障,这个我们称之为原假设。在这个情况下,我们是不可能出现检验到2个甚至2个以上的电子原件会发生故障,也就是说这种情况发生的概率应该是0。在统计学中,概率极小的事件我们称之为小概率事件。所以说,我们从1000个电子元件中随机拿出来5个进行检验,然后其中有2个发生了故障,也就是说小概率事件发生了。所以这个时候我们的结论是质检员说的话是不正确的,检验的结果没有支持他的判断。

但是如果我们换一种情况,在我们检验这1000个电子元件之前,质检员跟我们说这批电子元件的故障率是1%,我们依然从随机选择的5个电子元件中发现有2个是出现故障了,那这个时候又说明了什么呢?其实这个时候就应该有两个结论:

①:这批商品的故障率远高于1%,质量不可靠;

②:这批商品的故障率确实是1%,只是我们碰巧拿到了有故障的元件而已。

这个时候我们就应该来进行计算,按1%的故障率来说,1000个元件就应该有10个元件是会出现故障的,我们在5个里面发现2个产生了故障,这个情况的概率应该是0.088%(大家可以自己计算一下)。这样一对比,我们就会发现其实这是一个小概率事件而已。

在我们的原假设成立的条件下,如果我们分析计算出来的对应事件概率比较大,那就不能拒绝原假设。如果结果相反,那就说明小概率事件发生了。正常来说,小概率事件在一次实验中是几乎不可能会发生的,但是正常不可能发生的事件确实发生了。那么我们只能说我们的结果不能够支持我们的假设,也就是说质检员1%故障率的说法也是错误的。

上面的例子其实就是我们假设检验的原理:反证法以及小概率原理。反证法的意思就是说,我们在检验之前,先假定原假设是正确的,然后我们根据这个来得到我们的分析结论,如果我们得到的分析结论与原假设中的结论是矛盾的(根据小概率原理),我们就可以说原假设其实是不能成立的,或者一般在分析中我们叫拒绝原假设。虽然我们在做假设检验的时候依据是“小概率事件在一次实验中是几乎不可能会发生的”这个原理,但是小概率时间并不代表没有概率,也就是说它依旧是可能发生的,只是发生的概率很小而已。所以我们在做假设检验的时候会遇到两类问题:

1.原假设是正确的,但是我们根据结果错误的拒绝了原假设,在这个时候这个事件出现的概率也就是我们出现问题的概率。在前面的例子中,如果第二次检验电子元件的合格率确实是1%,但是我们认为这批元件的合格率大于1%,那我们就出现了第一种问题,同时出现这个问题的概率是0.088%。

2.原假设是错误的,但是我们根据结果并没有拒绝原假设,那这个事件发生的概率也就是这类问题出现的概率。

当我们在进行假设检验时,我们无法避免出现这两个问题,或者说降低出现这两类问题的概率。因为如果我们降低了其中一类问题的概率,那另外一类问题的概率就会随之增加。在一开始的举例中,企业是希望我们不要把无故障的元件误判为有故障,也就是说要降低企业的风险。其实在我们实际分析中,我们在第一类问题上面会受到更多的重视,我们会想把这个情况控制在一定的水平。而这个水平我们就将它称为显著性水平,在分析中用α表示。一般我们以0.05或者0.01等数字来表示它(根据实际情况来进行选择)。

正常的数据分析中,假设检验一般是先针对总体样本的均值、比例或者分布来做出假设,也就是我们说的原假设。然后我们会计算在该假设成立的前提下出现这种情况的概率,我们将它叫做P值。如果在实验的过程中小概率时间发生了,也就是说P<α,那就说明结果不支持原假设,我们应该拒绝原假设。在使用SPSS的时候,将这种概率称为显著性的值。反之如果P>α,那我们就接受原假设。在这个里面的α是我们用来把控第一类问题出现的概率,也就是出现这一类问题的概率最大为α。

最后我们来整理一下假设检验的分析步骤:

1.确定分析对应的原假设和与之对应的备用假设。

2.选择我们用来进行假设检验的对应统计量。

3.对选择出来的统计量进行计算并检验,得到P值。

4.确定显著性水平α。如果p<α,拒绝原假设。反之,接受原假设。

在我们的实际分析中,许多时候我们进行假设检验都是用来比较两个总体的均值。并且均值的比较在许多研究中都特别常见,应用也特别广泛。今天我们先整理了解假设检验的理论和原理,可能看起来会有一点绕,大家一定要多思考,这样的话我们对接下来的均值分析以及T检验的分析大家在理解的时候就不会有太大的问题了。

欢迎大家进行补充,大家可以在我们的QQ交流群(514581193)或者微信群中(关注小白数据营公众号后台留言进入)参与讨论和交流。

spss假设检验的基本步骤是

多元线性回归 1.打开数据,依次点击:analy--regression,打开多元线性回归对话框。

2.将因变量和自变量放入格子的列表里,上面的是因变量,下面的是自变量。3.设置回归方法,这里选择最简单的方法:enter,它指的是将所有的变量一次纳入到方程。其他方法都是逐步进入的方法。4.等级资料,连续资料不需要设置虚拟变量。多分类变量需要设置虚拟变量。虚拟变量ABCD四类,以a为参考,那么解释就是b相对于a有无影响,c相对于a有无影响,d相对于a有无影响。5.选项里面至少选择95%CI。点击ok。统计专业研究生工作室原创,请勿复杂粘贴
搜索
spss总体比例假设检验
excel假设检验步骤
假设法解题思路和步骤
主成分回归分析案例
回归方程计算方法
假设检验解题步骤

用SPSS进行假设检验,得出这个结果说明了什么,具体是怎么看的?

Levene's
test
即方差齐性检验的P>0.05,说明方差齐性或说方差相等。
分析结果看equal
variances
assumed的这一行,其P=0.022<0.05,
拒绝原假设,培训前和掊训后之间存在显著性差异。
培训前489.17,培训后560.00,培训后
>培训前,说明培训有效果。

SPSS统计软件 帮你试验和检验

SPSS统计软件:帮你试验和检验

 在质量管理中,正交试验和参数检验是质量管理者经常运用的两种方法。其中,正交试验一方面用于在产品设计阶段选择最优的设计参数配合,尽量降低成本;另一方面用于在生产过程中采用最优的工艺方案,以能达到优质、高产、低耗的目的。参数检验则在进货检验、产品验定、工艺检查等过程中借用所选样本的产品的特性对其所在整体进行假设检验,以确定整体的情况。

  然而,随着工艺的发展和产品复杂程度的提高,正交试验中的指标和因素也必将随着增加,计算过程也必将变得更加繁杂。而假设检验的计算分析过程必然是复杂的。因此,有必要利用计算机软件进行这两方面的工作,以便更好地完成企业质量管理工作。质量管理的设计实验

  本文用一个实例介绍SPSS统计软件对正交实验设计的数据分析过程。

  某轴承厂生产的轴承内套圈硬度不均匀,热处理淬火QC小组决定通过正交实验来优选淬火工艺参数,提高内套圈硬度均匀的合格率。经过分析,确定“淬火加热温度”、“淬火加热保温时间”、“回火加热温度”和“回火保温时间”为造成硬度不均匀的主要原因。根据以往经验,对4个因素各取3个水平:淬火加热温度分别为:835、845、855摄氏度;淬火加热保温时间分别为:20、15、10分钟;回火温度为:160、170、180摄氏度;回火保温时间为:2、2.5、3小时。

  第一步,建立SPSS的数据集文件。

  第二步,分析过程如下:

  ①单击Analyze菜单,选择GeneralLinearModels项。从中打开多因子方差分析“Univari?鄄ate”对话框,将变量“合格率”选入“DependentVariable”框,将其他变量选入“FixedFactor(s)”。

  ②点击“Options…”按钮,打开“Univariate:Options”对话框,将4个变量分别依次选入“Displaymeansfor”框内,点击“continue”。

  ③点击“Model…”按钮,打开“Univariate:Model”对话框,选择“custom”,将4个变量分别依次选入“Model”框内,点击“continue”。

  ④点击“OK”,统计分析结果如表1、表2所示。由表1的“Estimated MarginalMeans”单因素统计量表中“TypeIII Sumofsquares”列的数据可以看出:淬火加热温度是最重要的因素,其次依次分别是回火保温、淬火保温和回火温度;通过对表2各分表中的“Mean”列的数据比较,可知我们应该选择每个因素的最佳水平分别为:淬火加热温度选择水平3,即855摄氏度;回火保温时间选择水平1,即2小时。另外,点击“Univariate”中对话框其他按钮以及在“Univari?鄄ate:Options”对话框和“Uni?鄄variate:Model”对话框内,均可以设置更多统计分析要求。样本信息的参数检验

  在实际的生产、检验过程中,并不是对全部产品的特性进行测量,而是借助对所选择样本产品特性的测量,对样本所在的整体进行假设检验,以确定整批产品合格与否,从而做出决策。SPSS软件的参数检验,主要是要通过相伴概率值与显著性水平的比较,来决定拒绝还是接受原假设。在此,我们以最常用的t检验来说明SPSS在参数检验中的应用。

  t检验可以分为单样本t检验、两独立样本t检验和配对样本t检验。下面将以单样本t检验为例简单介绍SPSS在参数检验中的用法,两独立样本t检验和配对样本t检验分别由“Analyze”菜单中“comparemeans”的“Indepen?鄄dent-SamplesT Test”项和“Paired-Samples TTest”项来完成,操作与单样本t检验类同,在此不进行详细叙述。

  例:某电器厂生产一种云母片,要求厚度均值为13mm,今在某天生产的云母片中随机抽取26片。现在我们检验今天生产的云母片厚度均值是否与规定的质量分布要求有无显著差异(α=0.05)。

  第一步,建立SPSS的数据文件。

  第二步,单击“Analyze”菜单中“compare means”的“One Sam?鄄plesTTest”项,打开“One-Sam?鄄ple TTest”对话框,将变量“厚度”选入“Testvariable(s)”框内,表示需要对之进行分析;在“Testval?鄄ue:”中填入总体均值13,点击“OK”。

  第三步,点击“Options”按钮,打开“One-Sample TTest:Op?鄄tions”对话框,在“ConfidenceIn?鄄terval”内输入95,表示置信区间为95%;“MissingValues”是对缺省值的处理,在此选择“Excludecas analysisbyanalysis”,表示具体分析用到的变量有缺失值才除去该记录,点击“Continue”按钮。

  最后,点击“OK”,就能够得出检验结果.

以上是小编为大家分享的关于SPSS统计软件 帮你试验和检验的相关内容,更多信息可以关注环球青藤分享更多干货


对以下数据做spss的假设检验和方差分析,怎么做,又没有具体的操作步骤,求大神解答一下

单因素方差分析
方差分析前提:不同水平下,各总体均值服从方差相同的正态分布。
方差齐性检验:采用方差同质性检验方法(Homogeneity of variance)
在spss中打开你要处理的数据,在菜单栏上执行:analy-compare means--one-way anova,
打开单因素方差分析对话框
在这个对话框中,将因变量放到dependent list中,将自变量放到factor中,点击post hoc,选择snk和lsd,返回确认ok
统计专业研究生工作室原创,请勿复杂粘贴

如何用SPSS软件来做检验两组的差异是否具有显著性

1, 首先,分别把这两组数据分别设为x和y,打开SPSS,点击左下角的Variable View选项卡,在Name列那里的第一行输y,第二行输x,返回Data View选项卡,输入对应的数据。

2, 然后,进行数据分析,分别把y和x选进各自的对话框,然后按ok,在输出窗口中看到Coefficients这个表,然后看最右边的那个Sig列,看x对应的Sig值,若这个sig值比你之前所设定的a值大,则认为这两组数不存在显著性差异,若这个sig值比你之前所设定的a值小,则认为这两组数存在显著性差异。

3, 举个例子,如果你预先设定的a=0.05,求得的sig=0.000,则0.000<0.05,故应拒绝原假设(原假设一般为设它们之间无差异),认为这两组数有显著性差异。

扩展资料:

1, 当数据之间具有了显著性差异,就说明参与比对的数据不是来自于同一总体(Population),而是来自于具有差异的两个不同总体,这种差异可能因参与比对的数据是来自不同实验对象的,比如一些一般能力测验中,大学学历被试组的成绩与小学学历被试组会有显著性差异。也可能来自于实验处理对实验对象造成了根本性状改变,因而前测后测的数据会有显著性差异。

2, 比较方法:如果数据是连续性数据,且两组数据分别服从正态分布&方差齐(方差齐性检验),则可以采用t检验,如果不服从以上条件可以采用秩和检验。

3, 想知道两组数据是否有明显差异?不知道这个明显差异是什么意思?是问差别有无统计学意义(即差别的概率有多大)还是两总体均数差值在哪个范围波动?如果是前者则可以用第2步可以得到P值,如果是后者,则是用均数差值的置信区间来完成的。当然两者的结果在SPSS中均可以得到。

4, 在统计学中,差异显著性检验是“统计假设检验”(Statistical hypothesis testing)的一种,用于检测科学实验中实验组与对照组之间是否有差异以及差异是否显著的办法[1]。

5, 在实验进行过程中,尽管尽量排除随机误差的影响,以突出实验的处理效果,但由于个体间无法避免的差异,以及诸多无法控制的因素,使得实验结果最后表现的观察值处理处理效应之外,还包括实验误差的效应。因此对两个样本进行比较时,必须判断样本间差异主要是随机误差造成的,还是本质不同或处理效应引起的。

参考资料:

百度百科 显著性差异


本文发布于:2023-02-28 20:18:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/167766856283872.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:spss假设检验(spss假设检验结果分析).doc

本文 PDF 下载地址:spss假设检验(spss假设检验结果分析).pdf

标签:spss
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|