f检验法的详细步骤
f检验法的详细步骤如下:
提出假设。
无效假设H0:μ1=μ2=...μk。
备择假设H1:μ1、μ2...,μ不全相等。
确定显著性水平α。
显著性水平是数学界约定俗成的,一般有α =0.05,0.01两种情况。代表着假设检验的结论错误率必须低于5%或1%(统计学中,通常把在现实世...
通常情况下取a=0.05。
计算F统计量,计算双尾概率P。
在无效假设(原假设)H0成立的前提下,计算F统计量,计算无效假设正确的概率,也称差异由误差引起的概率。
什么是q检验法,f检验法和t检验法
【Q检验法】
Q检验法又叫做舍弃商法,是迪克森(W.J.Dixon)在1951年专为分析化学中少量观测次数(n<10)提出的一种简易判据式。
按以下步骤来确定可疑值的取舍:
(1)将各数据按递增顺数排列:X1,X2,X3,…,Xn-1,Xn。
(2)求出最大值与最小值的差值(极差)Xmax-Xmin.
(3)求出可疑值与其最相邻数据之间的差值的绝对值。
(4)求出Q(Q等于(3)中的差值除以(2)中的极差)。
(5)根据测定次数n和要求的置信水平(如95%)查表(见下)得到值
(6)判断:若计算Q>Q表,则舍去可疑值,否则应予保留。
【F检验法】
F检验法是英国统计学家Fisher提出的,主要通过比较两组数据的方差S2,以确定他们的精密度是否有显著性差异。至于两组数据之间是否存在系统误差,则在进行F检验并确定它们的精密度没有显著性差异之后,再进行t
检验。
样本标准偏差的平方,即:
两组数据就能得到两个S²值,
由表中f大和f小(f为自由度n-1),查得F表,
然后计算的F值与查表得到的F表值比较,如果
F
<
F表
表明两组数据没有显著差异;
F
≥
F表
表明两组数据存在显著差异。
【T检验法】
T检验法,亦称student
t检验(Student's
t
test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。
t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。t检验是戈斯特为了观测酿酒质量而发明的。戈斯特在位于都柏林的健力士酿酒厂担任统计学家,基于Claude
Guinness聘用从牛津大学和剑桥大学出来的最好的毕业生以将生物化学及统计学应用到健力士工业程序的创新政策。戈斯特于1908年在Biometrika上公布t检验,但因其老板认为其为商业机密而被迫使用笔名(学生)。实际上,跟他合作过的统计学家是知道“学生”的真实身份是戈斯特的。
F—检验法的简介
F检验法是英国统计学家Fisher提出的,主要通过比较两组数据的方差S2,以确定他们的精密度是否有显著性差异。至于两组数据之间是否存在系统误差,则在进行F检验并确定它们的精密度没有显著性差异之后,再进行t 检验。
样本标准偏差的平方,即:
S2=
两组数据就能得到两个S2值,S大2和S小2
F=S大2/S小2
由表中f大和f小(f为自由度n-1),查得F表,
然后计算的F值与查表得到的F表值比较,如果
F < F表 表明两组数据没有显著差异;
F ≥ F表 表明两组数据存在显著差异
F—检验法的介绍
F—检验法是检验两个正态随机变量的总体方差是否相等的一种假设检验方法。设两个随机变量X、Y的样本分别为X1,X2,……,Xn与Y1,Y2,……,Yn,其样本方差分别为S12与S22。现检验X的总体方差DX与Y的总体方差DY是否相等。假设H0:DX=DY=σ2。根据统计理论,如果X、Y为正态分布,当假设成立时,统计量(如右图)服从第一自由度为n1—1、第二自由度n2—1的F—分布。预先给定信度α。查F—分布表,得Fα/2。若计算的F值小于Fα/2,则假设成立,否则假设不合理。F—检验法还可用于两个以上随机变量平均数差异显著性的检验。
F检验法中 回归平方和的自由度为什么是1
一元线性回归模型里总离差平方和的自由度是n-1,然后回归平方和的自由度是由x的个数决定的,因为一元的里面就是一个x所以自由度就是一,残差平方和就是总的离差平方和减去回归平方和的自由度就是n-2。
用回归方程或回归线来描述变量之间的统计关系时,实验值yi与按回归线预测的值ŷ并不一定完全一致。ESS越大说明多元线性回归线对样本观测值的拟合情况越好。
扩展资料:
回归平方和是ESS是总偏差平方和(总离差平方和)TSS与残差平方和之差RSS,ESS= TSS-RSS。
在估计总体的方差时,使用的是离差平方和。只要n-1个数的离差平方和确定了,方差也就确定了;因为在均值确定后,如果知道了其中n-1个数的值,第n个数的值也就确定了。这里,均值就相当于一个限制条件,由于加了这个限制条件,估计总体方差的自由度为n-1。
在结构力学上的自由度,或称动不定度,意指分析结构系统时,有效的结构节点上的未知节点变位数。其中称之为“有效”是因为结构构件上的任一点,都应有机会具有自由度,我们只选择其中对分析整体结构有用的节点变位来讨论,而称为“未知”则因为为求解容易,我们通常尽可能减少自由度的数量,因此扣除已知的变位。
参考资料来源:百度百科--F—检验法
参考资料来源:百度百科--回归平方和
参考资料来源:百度百科--自由度
15-假设检验之F检验
本文发布于:2023-02-28 20:17:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167766780083593.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:f检验法(f检验法表).doc
本文 PDF 下载地址:f检验法(f检验法表).pdf
留言与评论(共有 0 条评论) |