选择排序
选择排序也是利用了“挡板法”这个经典思想。
挡板左边是已排序区间,右边是未排序区间,那么每次的“选择”是去找右边未排序区间的最小值,找到之后和挡板后面的第一个值换一下,然后再把挡板往右移动一位,保证排好序的这些元素在挡板的左边。
比如例子:{5, 2, 0, 1}
我们用一个挡板来分隔数组是否排好序,用指针 j 来寻找未排序区间的最小值;
第一轮 j 最初指向 5,然后遍历整个未排序区间,最终指向 0,那么 0 就和挡板后的第一个元素换一下,也就是和 5 交换一下位置,挡板向右移动一位,结束第一轮。
第二轮,j 从挡板后的2开始遍历,最终指向1,然后1和挡板后的第一个元素 2 换一下,挡板向右移动一位,结束第二轮。
第三轮,j 从2开始遍历,最终指向2,然后和2自己换一下,挡板向右移动一位,结束第三轮。
还剩一个元素,不用遍历了,就结束了。
选择排序与之前的插入排序对比来看,要注意两点:
挡板必须从 0 开始,而不能从 1 开始。虽然在这两种算法中,挡板的物理意义都是分隔已排序和未排序区间,但是它们的已排序区间里放的元素的意义不同:选择排序是只能把当前的最小值放进来,而不能放其他的;插入排序的第一个元素可以为任意值。所以选择排序的挡板左边最开始不能有任何元素。
在外层循环时,选择排序的最后一轮可以省略,因为只剩下最大的那个元素了;插入排序的最后一轮不可省略,因为它的位置还没定呢。class Solution { public void lectionSort(int[] input) { if(input == null || input.length <= 1) { return; } for(int i = 0; i < input.length - 1; i++) { int minValueIndex = i; for(int j = i + 1; j < input.length; j++) { if(input[j] < input[minValueIndex]) { minValueIndex = j; } } swap(input, minValueIndex, i); } } private void swap(int[] input, int x, int y) { int tmp = input[x]; input[x] = input[y]; input[y] = tmp; }}
时间复杂度
最内层的 if 语句每执行一次是 O(1) ,那么要执行多少次呢?
当 i = 0 时,是 n-1 次;当 i = 1 时,是 n-2 次;…最后是 1 次;所以加起来,总共是:(n-1) + (n-2) + … + 1 = n*(n-1) / 2 = O(n^2)
是这样算出来的,而不是一拍脑袋说两层循环就是 O(n^2).
空间复杂度
这个很简单,最多的情况是 call swap() 的时候,然后 call stack 上每一层就用了几个有限的变量,所以是 O(1)。
那自然也是原地排序算法了。
稳定性
这个答案是否定的,选择排序并没有稳定性。
因为交换的过程破坏了原有的相对顺序,比如: {5, 5, 2, 1, 0} 这个例子,第一次交换是 0 和 第一个 5 交换,于是第一个 5 跑到了数组的最后一位,且再也无翻身之地,所以第一个 5 第二个 5 的相对顺序就已经打乱了。
本文发布于:2023-02-28 20:00:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167764865576182.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:选择排序(选择排序法C语言代码).doc
本文 PDF 下载地址:选择排序(选择排序法C语言代码).pdf
留言与评论(共有 0 条评论) |