二重积分极坐标(二重积分极坐标θ范围)

更新时间:2023-03-01 10:19:14 阅读: 评论:0

二重积分极坐标是什么呢?

极坐标系里的二重积分r是指极坐标的极径,表示平面坐标点到原点的距离。

在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。

极径上下限的判断:从原点引一条射线(射线角度在积分区域范围内)若在积分区域内交与两条曲线,则离原点较远(后交的曲线)的曲线则为上限,反之较远的为下限,若在积分区域内只交到一条曲线,则此条曲线为上限,下限为0,若在积分区域内没有相交的曲线,则上限为积分区域在x轴上的边界,下限为零。



当被积函数大于零时,二重积分是柱体的体积。当被积函数小于零时,二重积分是柱体体积负值。

在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。


极坐标下的二重积分是什么?

极坐标下的二重积分是x^2+y^2,特别是含有它们的分数方次的情况。

例如以下两种情形通常的二重积分使用极坐标计算:

1、积分区域D与圆有关(可以是部分圆域,例如圆周与直线所围成的区域)。

2、被积函数f(x,y)中含有形如x²+y²,xy,y/x,x/y的式子。

若1、2同时满足,则必定要采用极坐标计算,但如果仅满足其中一个,特别是1不满足时,有时用直角坐标计算反而更方便。

二重积分几何意义:

在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。

例如二重积分,其中,表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积。

数值意义:

二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。

如函数,其积分区域D是由所围成的区域。

其中二重积分是一个常数,不妨设它为A。对等式两端对D这个积分区域作二重定积分。

故这个函数的具体表达式为:f(x,y)=xy+1/8,等式的右边就是二重积分数值为A,而等式最左边根据性质5,可化为常数A乘上积分区域的面积1/3,将含有二重积分的等式可化为未知数A来求解。


二重积分计算(极坐标形式)

  极坐标下的二重积分计算法
  

  极坐标系下,直线x=1的方程是ρcosθ=1,即ρ=1/cosθ。射线y=x的方程是θ=π/4。

  确定θ的取值范围:积分区域夹在射线θ=0与θ=π/4之间,所以θ的取值范围是 0≤θ≤π/4。

  确定ρ的取值范围:从极点作射线与直线ρ=1/cosθ相交,所以ρ的取值范围是 0≤ρ≤1/cosθ。

  所以,二重积分在极坐标系下表示为:∫0~π/4 dθ ∫0~1/cosθ f(ρcosθ,ρsinθ) ρdρ

二重积分在什么情况下用极坐标法

用极坐标计算二重积分没有一定之规,极坐标一般用于积分域是圆或其中一部分zhi的,积分域用极坐标表示比直角坐标表示明显简单的,积分函数含有 x^2+y^2,特别是含有它们的分数方次的情况。

例如以下两种情形通常的二重积分使用极坐标计算:

1、积分区域D与圆有关(可以是部分圆域,例如圆周与直线所围成的区域)。

2、被积函数f(x,y)中含有形如x²+y²,xy,y/x,x/y的式子。

若1、2同时满足,则必定要采用极坐标计算,但如果仅满足其中一个,特别是1不满足时,有时用直角坐标计算反而更方便

扩展资料:

意义

当被积函数大于零时,二重积分是柱体的体积。

当被积函数小于零时,二重积分是柱体体积负值。

几何意义

在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。


在“二重积分”中极坐标角度如何规定?

一、一般分3种情况:

原点(极点)在积分区域的内部,角度范围从0到2pi;

2.原点(极点)在积分区域的边界,角度范围从区域的边界,按逆时针方向扫过去,到另一条止;

3.原点(极点)在积分区域之外,角度范围从区域的靠极轴的边界,按逆时针方向扫过去,到另一条止。

二、方法:

1、将积分区域,分成一个个单连通区域;

2、所谓的单连通区域,就是任何极半径, 最多只能穿透一次、再触及区域曲线;

3、每一个单连通区域,都具有两根切线;

4、对每一个单连通区域,积分时的角度, 按顺时针方向,从第一根切线的角度, 积分到第二根曲线的角度;

5、整体的积分,就是对每个单连通区域的积分, 然后求和,得到最后结果;

6、角度必须是弧度制。


极坐标求二重积分公式

极坐标求二重积分公式如下:

什么是极坐标:

极坐标,属于二维坐标系统,创始人是牛顿,主要应用于数学领域。极坐标是指在平面内取一个定点O,叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。

对于平面内任何一点M,用ρ表示线段OM的长度(有时也用r表示),θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。通常情况下,M的极径坐标单位为1(长度单位),极角坐标单位为rad。

极坐标的历史:

众所周知,希腊人最早使用了角度和弧度的概念。天文学家喜帕恰斯制成了一张求各角所对弦的弦长函数的表格。并且,曾有人引用了他的极坐标系来确定恒星位置。在螺线方面,阿基米德描述了他的著名的螺线,一个半径随角度变化的方程。希腊人作出了贡献,尽管最终并没有建立整个坐标系统。

关于是谁首次将极坐标系应用为一个正式的坐标系统,流传着有多种观点。关于这一问题的较详尽历史,卡瓦列里首次利用极坐标系来解决一个关于阿基米德螺线内的面积问题。布莱士·帕斯卡随后使用极坐标系来计算抛物线的长度。


本文发布于:2023-02-28 19:50:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/167763715471867.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:二重积分极坐标(二重积分极坐标θ范围).doc

本文 PDF 下载地址:二重积分极坐标(二重积分极坐标θ范围).pdf

标签:积分   极坐标
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|