对数的定义域是什么?
对数的定义域:x∈(0,+∞),值域:y∈R。
对数函数是函数的一类,所以讨论对数函数的性质就是讨论函数的性质。
从函数性质开始:
函数的第一个性质就是单调性,但函数的单调性是由底数a决定的,当a>1时,对数函数就是单调递增函数,当0。
函数的其他性质就是奇偶性,周期性,对称性,但对数函数都不具备,所以在此就不做讨论了。
对数函数特有的性质就是所有的对数函数必过一个点(0,1),即当x=0时,即y=1。
产生历史:
16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数。
德国的史蒂非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent,有代表之意)。
欲求左边任两数的积(商),只要先求出其代表(指数)的和(差),然后再把这个和(差)对向左边的一个原数,则此原数即为所求之积(商),可惜史提非并未作进一步探索,没有引入对数的概念。
对数的定义域是什么?
对数的定义域是大于0且不等于1,在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。这意味着一个数字的对数是必须产生另一个固定数字的指数。
一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。
对数函数是6类基本初等函数之一。
其中对数的定义:
如果a^x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
“log”是拉丁文logarithm(对数)的缩写,读作:[英][lɔɡ][美][lɔɡ, lɑɡ]。
对数定义域是什么?
对于对数函数y=logg(x)来说,其定义域为:
1、对数函数的真数g(x)>0。
2、对数函数的底数f(x)>0,且f(x)≠1。
对数函数的底数要大于0且不为1的原因:
在一个普通对数式里 a<0,或=1 的时候是会有相应b的值。但是,根据对数定义:log以a为底a的对数;如果a=1或=0,那么log以a为底a的对数就可以等于一切实数,比如log11也可以等于2,3,4,5,等等。
对数的应用:
对数在数学内外有许多应用,这些事件中的一些与尺度不变性的概念有关,例如,鹦鹉螺的壳的每个室是下一个的大致副本,由常数因子缩放,这引起了对数螺旋,Benford关于领先数字分配的定律也可以通过尺度不变性来解释,对数也与自相似性相关。
例如,对数算法出现在算法分析中,通过将算法分解为两个类似的较小问题并修补其解决方案来解决问题,自相似几何形状的尺寸,即其部分类似于整体图像的形状也基于对数,对数刻度对于量化与其绝对差异相反的值的相对变化是有用的。
对数函数的定义域是什么?
对于对数函数y=logg(x)来说,其定义域为:
1、对数函数的真数g(x)>0;
2、对数函数的底数f(x)>0,且f(x)≠1。
对数函数的底数要大于0且不为1的原因:
在一个普通对数式里 a<0,或=1 的时候是会有相应b的值。但是,根据对数定义:log以a为底a的对数;如果a=1或=0,那么log以a为底a的对数就可以等于一切实数,比如log11也可以等于2,3,4,5,等等。
扩展资料:
对数函数性质:
对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1,和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}:
值域:实数集R,显然对数函数无界;
定点:对数函数的函数图像恒过定点(1,0);
单调性:a>1时,在定义域上为单调增函数;
0<a<1时,在定义域上为单调减函数;
奇偶性:非奇非偶函数
周期性:不是周期函数
对数定义域是什么?
对数函数的底数要大于0且不为1的原因:在一个普通对数式里a0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1,和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}。
值域:实数集R,显然对数函数无界;定点:对数函数的函数图像恒过定点(1,0);单调性:a>1时,在定义域上为单调增函数;0奇偶性:非奇非偶函数周期性:不是周期函数。
函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
请问对数函数的定义域是什么?
1、对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}
2、值域:实数集R,显然对数函数无界;
3、定点:对数函数的函数图像恒过定点(1,0);
4、单调性:a>1时,在定义域上为单调增函数;
5、0<a<1时,在定义域上为单调减函数;
6、奇偶性:非奇非偶函数
7、周期性:不是周期函数
log函数产生历史
16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数。
德国的史蒂非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent,有代表之意)。
欲求左边任两数的积(商),只要先求出其代表(指数)的和(差),然后再把这个和(差)对向左边的一个原数,则此原数即为所求之积(商),可惜史提非并未作进一步探索,没有引入对数的概念。
本文发布于:2023-02-28 19:50:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167763693469474.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:对数函数的定义域(对数函数的定义域为R).doc
本文 PDF 下载地址:对数函数的定义域(对数函数的定义域为R).pdf
留言与评论(共有 0 条评论) |