什么叫错位相减法
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。 形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。
在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用。这是例子(公比为a,格式问题,在a后面的数字和n都是指数形式):
S=a+2a^2+3a^3+……+(n-2)a^(n-2)+(n-1)a^(n-1)+na^n(1)
在(1)的左右两边同时乘上a。得到等式(2)如下:
aS=a^2+2a^3+3a^4+……+(n-2)a^(n-1)+(n-1)a^n+na^(n+1)(2)
用(1)—(2),得到等式(3)如下:
(1-a)S=a+(2-1)a^2+(3-2)a^3+……+(n-n+1)a^n-na^(n+1)(3)
(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)
S=a+a^2+a^3+……+a^(n-1)+a^n用这个的求和公式。
(1-a)S=a+a^2+a^3+……+a^(n-1)+a^n-na^(n+1)
最后在等式两边同时除以(1-a),就可以得到S的通用公式了。
具体例题
例子:求和Sn=1+3x+5x^2+7x^3+……+(2n-1)·x^(n-1)(x不等于0)
解:当x=1时,Sn=1+3+5+…..+(2n-1)=n^2
当x不等于1时,Sn=1+3x+5x^2+7x^3+……..+(2n-1)·x^(n-1)
所以xSn=x+3x^2+5x^3+7x^4.…….+(2n-1)·x^n
所以两式相减的(1-x)Sn=1+2x【(1+x+x^2+x^3+...+x^(n-2)】-(2n-1)·x^n。
化简得:Sn=(2n-1)·x^(n+1)-(2n+1)·x^n+(1+x)/(1-x)^2
Cn=(2n+1)*2^n
Sn=3*2+5*4+7*8+...+(2n+1)*2^n
2Sn=3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1)
两式相减得-Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1)=6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1)=6+2^(n+2)-8-(2n+1)*2^(n+1)(等比数列求和)=(1-2n)*2^(n+1)-2
所以Sn=(2n-1)*2^(n+1)+2
错位相减法这个在求等比数列求和公式时就用了
Sn=1/2+1/4+1/8+....+1/2^n
两边同时乘以1/21/2Sn=1/4+1/8+....+1/2^n+1/2^(n+1)(注意根原式的位置的不同,这样写看的更清楚些)
两式相减1/2Sn=1/2-1/2^(n+1)Sn=1-1/2^n
错位相减法在数列求和中经常用到,要观察它的特点,才能把握
错位相减法公式
错位相减法秒杀公式是:A=BC,其中B为等差数列,通项公式为b=b+n-1*d,C为等比数列,通项公式为c=c*q。
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。
错位相减法数列的含义:“错位相减法”是求一类数列和的公式的方法,不是公式。主要用于求等比数列的前n项和及形如{an.bn}(也非正式地称为差比数列)的前n项和,其中{an为等差数列},{bn为等比数列}。
碾转相减法是,任意给定两个正整数;判断它们是否都是偶数,若是则用2约简;以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的减数和差相等为止,则这个等数就是所求的最大公约数。还有一种叫辗转相除法。
形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)*d;{Cn}为等比数列,通项公式为cn=c1*q^(n-1);对数列An进行求和,首先列出Sn,再把所有式子同时乘以等比数列的公比q,即q·Sn,然后错开一位,简化对数列An的求和。这种数列求和方法叫做错位相减法。
什么叫错位相减法
错位相减法是求和的一种解题方法.在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用.这是例子(格式问题,在a后面的数字和n都是指数形式):
S=a+2a2+3a3+……+(n-2)an-2+(n-1)an-1+nan (1)
在(1)的左右两边同时乘上a.得到等式(2)如下:
aS= a2+2a3+3a4+……+(n-2)an-1+(n-1)an+nan+1 (2)
用(1)—(2),得到等式(3)如下:
(1-a)S=a+(2-1)a2+(3-2)a3+……+(n-n+1)an-nan+1 (3)
(1-a)S=a+a2+a3+……+an-1+an-nan+1
S=a+a2+a3+……+an-1+an用这个的求和公式.
(1-a)S=a+a2+a3+……+an-1+an-nan+1
最后在等式两边同时除以(1-a),就可以得到S的通用公式了
错位相减法详解?
错位相减法:若An为等差数列,Bn为等比数列,求A1B1+A2B2+.+AnBn的和.即就是当求一个数列的前n项和.其中每一项都可以拆成一个等差数列与一个等比数列相乘.这时就可以用错位相减法.若求数列前n项和为Sn.我们应先构造一个可以与其错位相减的新式.其一般方法是乘以原数列的公比,如数列中公比为2,则我们构成的新式为2Sn,数列中公比为1/2,则我们构成的新式为1/2Sn.先由原式观察出公比后再写出新式.书写是为了避免出错,我们写新式可以空着第一项不写,新式的首项对应在原式的第2项下面,新式第2项对应在原式第3项下面,以此类推.注意由于错位,新式倒数第2项对应原式末项.新式末项空出,即无原式对应.至此除原式首项与新式末项空出外.原式新式错位对应.此时可将两式错位相减,一般是用原式减新式.错位相减后应特别注意原式首项与新式末项.其余每项相减后出现新的等比数列.这时我们就可以利用等比数列的前n项和公式计算新数列了.这时应注意新等比数列的项数.求和之后再加上原式首项以及减去新式末项.再将左边的系数除过去再将整体化简即可!
数列错位相减法秒杀公式
错位相减法秒杀公式是A=BC,其中B为等差数列,通项公式为b=b+n-1*d,C为等比数列,通项公式为c=c*q。
1、错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式,形如An=BnCn,其中Bn为等差数列,Cn为等比数列,分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可。
2、形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+n-1*d;{Cn}为等比数列,通项公式为cn=c1*q^n-1,对数列An进行求和,首先列出Sn,记为式1,再把所有式子同时乘以等比数列的公比q,即qSn记为式2,然后错开一位,将式1与式2作差,对从而简化对数列An的求和。这种数列求和方法叫做错位相减法 。
3、错位相加减是利用数列通项的规律,构造一个新数列,与原数列指定项做加减,消去或合并相等项。可用于求前n项和公式。如错位相加用于等差数列,错位相减用于等比数列。
举例:
求和Sn=1+3x+5x2+7x3+…+(2n-1)·xn-1(x≠0,n∈N*)。
当x=1时,Sn=1+3+5+…+(2n-1)=n2。
当x≠1时,Sn=1+3x+5x2+7x3+…+(2n-1)xn-1。
∴xSn=x+3x2+5x3+7x4+…+(2n-1)xn。
两式相减得(1-x)Sn=1+2(x+x2+x3+x4+…+xn-1)-(2n-1)xn。