正比例和反比例的区别是什么?
正比例和反比例的区别例子说明如下:
一、正比例例子:
1、单价一定,总价和数量成正比例。
2、数量一定,总价和单价成正比例。
3、长方形的长一定,面积和宽成正比例。
4、长方形的宽一定,面积和长成正比例。
5、速度一定,路程和时间成正比例。
二、反比例例子:
1、百米赛跑,路程100米不变,速度和时间是反比例;
2、排队做操,总人数不变,排队的行数和每行的人数是反比例;
3、做纸盒子,总个数一定,每人做的个数和人数;
4、总价一定,它的单价和数量是反比例;
5、长方形的面积一定,长和宽是反比例;
编写意图
教学正比例图像。函数的图像是用平面直角坐标系表示的,由于学生没有直角坐标系方面的知识,教材直接呈现出例1中体积与高度的正比例关系图像(正比例关系的图像是一条经过原点的直线。
因为小学阶段研究的数都是正数,所以表示的图像都限于平面直角坐标系的第一象限),再通过图下面的两个问题,让学生体会正比例图像的特点和作用,加深对正比例的认识。
以上内容参考:百度百科-正比例和反比例
什么是正比例、反比例
正比例是指两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
反比例,指的是两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,那么他们就叫做成反比例的量,他们的关系叫做反比例关系。
正比例例子:
1、单价一定,总价和数量成正比例。
2、数量一定,总价和单价成正比例。
反比例例子:
1、百米赛跑,路程100米不变,速度和时间是反比例。
2、排队做操,总人数不变,排队的行数和每行的人数是反比例。
扩展资料:
正反比例相同之处
(1) 事物关系中都有两个变量,一个常量。
(2)在两个变量中,当一个变量发生变化时,则另一个变量也随之发生变化。
(3)相对应的两个变数的积或商都是一定的。
正反比例相互转化
当正比例中的x值(自变量的值)转化为它的倒数时,由正比例转化为反比例;当反比例中的x值(自变量的值)也转化为它的倒数时,由反比例转化为正比例。
参考资料来源:百度百科-反比例
参考资料来源:百度百科-正比例
正比例和反比例的概念
正比例是指两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
反比例,指的是两种相关联的变量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,那么他们就叫做成反比例的量,他们的关系叫做反比例关系。
反比例的应用
反比例关系在应用题中属于归总问题。反映在除法中,当被除数一定,除数和商成反比例关系。在分数中,当分数的分子一定,分母与分数值成反比例关系。
在比例中,比的前项一定,比的后项与比值成反比例关系。如果再把总数与份数关系具体化为:在购物问题中,总价一定,单价和数量成反比例关系。
在行程问题中,总路程一定,速度和时间成反比例关系。在工程问题中,在地上挖个坑所花的时间也(大致地)和雇来挖坑的人数成反比的。
在笛卡尔坐标平面上,两个具有反比例关系的变量的图形是一对双曲线。该图线上的每一点的 X 和 Y 坐标值之积总是等于比例常数 (k)。由于 k非零,所以图线不会与坐标轴相交。
以上内容参考:百度百科-正比例、百度百科-反比例
正比例和反比例的概念是什么?
正比例概念:正比例是两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
反比例概念:反比例是两种相关联的变量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,那么他们就叫做成反比例的量,他们的关系叫做反比例关系。
1、正比例性质:如果用x和y来表示两个相关联的量,用k表示它们的比值正比例关系式是x÷y=k(一定)。
2、在判断两种相关联的量是否成正比例时应注意这两种相关联的量,虽然也是一种量,随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比例。比值一定。
3、反比例性质:如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以用下面关系式表示:x×y=k(一定)。
4、成反比例的量包括三个数量,一个定量和两个变量。研究两个变量之间的扩大(或缩小)的变化关系。一种量发生变化,引起另一种量发生相反的变化。这两种量是反比例的量,它们的关系成反比例关系。
什么是正比例和反比例?
正比:
两种相关联的量,一种量变化,另一种量也随着变化。且一种量随着另一种量的增大而增大。如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系,我们就称这两个变量成正比例。
反比:
两个事物或一事物的两个方面,一方 发生变化,其另一方随之起相反的变化,如老年人随着年龄的增长,体力反而逐渐衰弱,就是反比。
扩展资料:
正比例的图像是在一条过原点的射线上。就是从统计表的横坐标、纵坐标交汇处沿左下角到右上角的对角线发展,延伸至表格外,在这里正比例的意义上它可以向下延伸,所以认为它是直线。
反比例关系在应用题中属于归总问题。反映在除法中,当被除数一定,除数和商成反比例关系。在分数中,当分数的分子一定,分母与分数值成反比例关系。
参考资料:正比-百度百科反比-百度百科
本文发布于:2023-02-28 19:48:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167763529868912.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:正比例和反比例(正比例和反比例的判断方法).doc
本文 PDF 下载地址:正比例和反比例(正比例和反比例的判断方法).pdf
留言与评论(共有 0 条评论) |