什么是三维激光扫描技术?
三维激光扫描技术(Terrestrial Lar Scanning, TLS)是20世纪90年代中期随着 科技 不断发展而出现的一种高新技术,同时也是继GPS空间定位系统之后的又一项测绘技术新突破。
三维激光扫描技术通过高速激光扫描测量的方法,能够大面积、高分辨率的快速获取被测对象表面的三维坐标数据,同时可以通过专业软件和测量数据建立物体的三维实体模型。
该技术具有非接触性、快速性、主动性等特性,实时获取的数据具有高密度、高精度等特点,其应用可能引起测绘技术的又一次革命。
三维激光扫描技术是一种集成了多种高新技术的新型测绘技术。在扫描仪器内部,扫描控制模块调整并测量每个脉冲激光的角度,针对每一个扫描点可测得发射点至扫描点的斜距,再配合扫描的水平和垂直方向角,可以得到每一个扫描点与发射点的空间相对坐标。
三维激光扫描技术所具备的技术特点使其具有广阔的应用前景,它的自动化程度、测量能力、人力成本、测量速度、数据处理效率等等整体经济效益均明显优于其他测量技术。
相对于传统的单点测量模式,三维激光扫描技术是被认为单点测量进化到面测量的革命性技术突破。
该技术在自动驾驶及驾驶辅助领域、测绘工程领域、结构测量领域、 历史 建筑及古迹测量领域、 娱乐 领域以及其他相关领域具有诸多广泛的应用前景。
三维激光扫描技术目前最火热的应用场景可以说是在自动驾驶及驾驶辅助这一领域,目前市面上诸多激光雷达相关产商也都在积极的追逐和布局这一领域。
三维激光扫描技术可以应用在公路测绘、地形测量、河道测绘、铁路测绘、隧道的检测及变形监测、大坝的变形监测、桥梁及建筑物测绘、地下工程测绘、矿山测量及体积计算等领域。
三维激光扫描技术可以广泛应用于桥梁工程、建筑工程等工程设施的改扩建测量、结构的三维仿真、空间位置测量、面积及体积测量等方面;可用于造船厂、化工厂、电厂、海上平台等大型工业企业内部设备的测量及建模;还可以用于管道等线路工程的测量、各类机械制造及安装等领域。
三维激光扫描技术的非接触式测量模式使其在这一领域发挥了重要的作用,如进行 历史 建筑物内部及外部的高仿真测量、估计的测量、文物的修复、古建筑资料的保存、遗址测绘、考古现场模拟及现场保护性影像记录等。
三维激光扫描技术可以用于影视产品中三维场景虚拟重建及人物素材的设计、3D 游戏 角色的开发、虚拟博物馆的建设与管理等。
在紧急服务业中,如现场灾害评估、犯罪现场记录与还原,交通事故现场快速三维记录等;在采矿业中,如开挖体积计算、矿产储量计算、塌陷区域测量等工作都可以采用三维激光扫描技术来代替传统测量模式。
相信随着三维激光扫描技术的不断发展,其应用领域将会更加的广泛和成熟。
三维扫描可以做什么?
三维激光扫描技术又称作高清晰测量,也被称为“实景复制技术”,它是利用激光测距的原理,通过记录被测物体表面大量密集点的三维坐标信息和反射率信息,将各种大实体或实景的三维数据完整地采集到计算机中。①
它提供了一种快速准确的方法将实物数字化,且 具有速度快、精度高的优点 。它能实现非接触测量,因此在建筑领域应用更加安全和快捷。
通过三维扫描技术得到的高密度、有精确三维坐标的三维激光数据称之为 点云 。在建筑行业可利用点云做三维建模,高精度三维点云数据通过算法拟合生成曲面,精度高,同时建模速度快。
1、实测实量
三维扫描技术是将实景复制的,平距、斜距、垂距、净空、直径、角度、方位角、坡度和坐标等数据,都可以在点云处理软件中点几下鼠标轻松量测出。
在某个对平整度要求比较高的工程,使用平整分析工具,可以测算出现状与需求面(平面或曲面)之间的偏差,并输出报表及指定分辨率下的CAD图纸。
可以将处理完成的三维空间与同事、客户分享,不仅可以分享三维空间文件,还可以分享为图像、视频、网页等形式,便于查看和协同工作。
三维激光扫描可以获取地表面点云,并赋予绝对坐标,然后计算设计曲面与原始曲面之间的土方量,即为“土方开挖预估量”。工程可覆盖土方、滑坡体积、储存空间、容积等方面,可以准确清晰的辅助施工。
三维扫描可以获取高精度实景数据,可以与现有虚拟的BIM模型做冲突对比,为下部工程进场做验证分析。
大型设备进场路线、运输优化。工厂作业、运行范围的碰撞检测。
扫描数据自带带影像及坐标,无需二维图纸。能够提交所需的范围、精度、分辨率和影像。快速捕获建筑地标并为注释添加图像,以这种方式深入记录场地。
不同于实测实量,可以将BIM模型与现状进行对比,使三维模型的优化更加直观,便于BIM模型深化。
图中红色部分偏差较大
激光三维扫描仪原理是什么?
三维激光扫描技术是近年来出现的新技术,在国内越来越引起研究领域的关注。它是利用激光测距的原理,通过记录被测物体表面大量的密集的点的三维坐标、反射率和纹理等信息,可快速复建出被测目标的三维模型及线、面、体等各种图件数据。由于三维激光扫描系统可以密集地大量获取目标对象的数据点,因此相对于传统的单点测量,三维激光扫描技术也被称为从单点测量进化到面测量的革命性技术突破。该技术在文物古迹保护、建筑、规划、土木工程、工厂改造、室内设计、建筑监测、交通事故处理、法律证据收集、灾害评估、船舶设计、数字城市、军事分析等领域也有了很多的尝试、应用和探索。三维激光扫描系统包含数据采集的硬件部分和数据处理的软件部分。按照载体的不同,三维激光扫描系统又可分为机载、车载、地面和手持型几类。
应用扫描技术来测量工件的尺寸及形状等原理来工作。主要应用于逆向工程,负责曲面抄数,工件三维测量,针对现有三维实物(样品或模型)在没有技术文档的情况下,可快速测得物体的轮廓集合数据,并加以建构,编辑,修改生成通用输出格式的曲面数字化模型。
三维扫描技术原理是什么?
你要问的是激光的还是拍照的? 现在新兴主流的是拍照式扫描仪,也就是非接触扫描。
简单的来说拍照式三维扫描仪整个扫描过程是基于光学三角测量原理,首先投影模块将一系列编码光栅投影到物体表面;由采集模块得到相应被调制的图象,然后通过特有的算法获取点云数据的三坐标位置。
底下的图片希望能帮助理解。
三维扫描仪工作原理及应用
三维扫描仪(3D scanner)是一种科学仪器,用来侦测并分析现实世界中物体或环境的形状(几何构造)与外观数据(如颜色、表面反照率等性质)。搜集到的数据常被用来进行三维重建计算,在虚拟世界中创建实际物体的数字模型。这些模型具有相当广泛的用途,举凡工业设计、瑕疵检测、逆向工程、机器人导引、地貌测量、医学信息、生物信息、刑事鉴定、数字文物典藏、电影制片、游戏创作素材等等都可见其应用。三维扫描仪的制作并非仰赖单一技术,各种不同的重建技术都有其优缺点,成本与售价也有高低之分。目前并无一体通用之重建技术,仪器与方法往往受限于物体的表面特性。例如光学技术不易处理闪亮(高反照率)、镜面或半透明的表面,而激光技术不适用于脆弱或易变质的表面。
三维扫描仪的用途是创建物体几何表面的点云(point cloud),这些点可用来插补成物体的表面形状,越密集的点云可以创建更精确的模型(这个过程称做三维重建)。若扫描仪能够获取表面颜色,则可进一步在重建的表面上粘贴材质贴图,亦即所谓的材质印射(texture mapping)。
三维扫描仪可模拟为照相机,它们的视线范围都呈现圆锥状,信息的搜集皆限定在一定的范围内。两者不同之处在于相机所抓取的是颜色信息,而三维扫描仪测量的是距离。由于测得的结果含有深度信息,因此常以深度视频(depth image)或距离视频(ranged image)称之。
由于三维扫描仪的扫描范围有限,因此常需要变换扫描仪与物体的相对位置或将物体放置于电动转盘(turnable table)上,经过多次的扫描以拼凑物体的完整模型。将多个片面模型集成的技术称做视频配准(image registration)或对齐(alignment),其中涉及多种三维比对(3D-matching)方法。
三维扫描仪分类为接触式(contact)与非接触式(non-contact)两种,后者又可分为主动扫描(active)与被动扫描(passive),这些分类下又细分出众多不同的技术方法。使用可见光视频达成重建的方法,又称做基于机器视觉(vision-bad)的方式,是今日机器视觉研究主流之一。
接触式扫描:
接触式三维扫描仪透过实际触碰物体表面的方式计算深度,如座标测量机(CMM,CoordinateMeasuring Machine)即典型的接触式三维扫描仪。此方法相当精确,常被用于工程制造产业,然而因其在扫描过程中必须接触物体,待测物有遭到探针破坏损毁之可能,因此不适用于高价值对象如古文物、遗迹等的重建作业。此外,相较于其他方法接触式扫描需要较长的时间,现今最快的座标测量机每秒能完成数百次测量,而光学技术如激光扫描仪运作频率则高达每秒一万至五百万次。
非接触主动式扫描:
主动式扫描是指将额外的能量投射至物体,借由能量的反射来计算三维空间信息。常见的投射能量有一般的可见光、高能光束、超音波与X射线。
时差测距(Time-of-Flight)
光达(lidar,LIght Detection And Ranging的缩写,或称3D激光扫描仪)可用于扫描建筑物、岩层(rock formations)等,以制作3D模型。光达的激光光束可扫描相当大的范围:如图中此款的仪器头部可水平旋转360度,而反射激光光束的镜面则在垂直方向快速转动。仪器所发出的激光光束,可量测仪器中心到激光光所打到第一个目标物之间的距离。
时差测距(time-of-flight,或称'飞时测距')的3D激光扫描仪是一种主动式(active)的扫描仪,其使用激光光探测目标物。图中的光达即是一款以时差测距为主要技术的激光测距仪(lar rangefinder)。此激光测距仪确定仪器到目标物表面距离的方式,是测定仪器所发出的激光脉冲往返一趟的时间换算而得。即仪器发射一个激光光脉冲,激光光打到物体表面后反射,再由仪器内的探测器接收信号,并记录时间。由于光速(speed of light)为一已知条件,光信号往返一趟的时间即可换算为信号所行走的距离,此距离又为仪器到物体表面距离的两倍,故若令为光信号往返一趟的时间,则光信号行走的距离等于。显而易见的,时差测距式的3D激光扫描仪,其量测精度受到我们能多准确地量测时间,因为大约3.3皮秒(picocond;微微秒)的时间,光信号就走了1毫米。
激光测距仪每发一个激光信号只能测量单一点到仪器的距离。因此,扫描仪若要扫描完整的视野(field of view),就必须使每个激光信号以不同的角度发射。而此款激光测距仪即可透过本身的水平旋转或系统内部的旋转镜(rotating mirrors)达成此目的。旋转镜由于较轻便、可快速环转扫描、且精度较高,是较广泛应用的方式。典型时差测距式的激光扫描仪,每秒约可量测10,000到100,000个目标点。
三角测距(Triangulation)
Principle of a lar triangulation nsor. Two object positions are shown.
三角测距3D激光扫描仪,也是属于以激光光去侦测环境情的主动式扫描仪。相对于飞时测距法,三角测距法3D激光扫描仪发射一道激光到待测物上,并利用摄影机查找待测物上的激光光点。随着待测物(距离三角测距3D激光扫描仪)距离的不同,激光光点在摄影机画面中的位置亦有所不同。这项技术之所以被称为三角型测距法,是因为激光光点、摄影机,与激光本身构成一个三角形。在这个三角形中,激光与摄影机的距离、及激光在三角形中的角度,是我们已知的条件。透过摄影机画面中激光光点的位置,我们可以决定出摄影机位于三角形中的角度。这三项条件可以决定出一个三角形,并可计算出待测物的距离。在很多案例中,以一线形激光条纹取代单一激光光点,将激光条纹对待测物作扫描,大幅加速了整个测量的进程。National Rearch Council of Canada是致力于研发三角测距激光扫描技术的协会之一(1978)。
手持激光(Handhold Lar)
手持激光扫描仪透过上述的三角形测距法建构出3D图形:透过手持式设备,对待测物发射出激光光点或线性激光光。以两个或两个以上的侦测器(电耦组件或 位置感测组件)测量待测物的表面到手持激光产品的距离,通常还需要借助特定参考点-通常是具黏性、可反射的贴片-用来当作扫描仪在空间中定位及校准使用。这些扫描仪获得的数据,会被导入计算机中,并由软件转换成3D模型。手持式激光扫描仪,通常还会综合被动式扫描(可见光)获得的数据(如待测物的结构、色彩分布),建构出更完整的待测物3D模型。
结构光源(Structured Lighting)
将一维或二维的图像投影至被测物上,根据图像的形变情形,判断被测物的表面形状,可以非常快的速度进行扫描,相对于一次测量一点的探头,此种方法可以一次测量多点或大片区域,故能用于动态测量。
调变光(Modulated Lighting)调变光三维扫描仪在时间上连续性的调整光线的强弱,常用的调变方式是周期性的正弦波。借由观察视频每个像素的亮度变化与光的相位差,即可推算距离深度。调变光源可采用激光或投影机,而激光光能达到极高之精确度,然而这种方法对于噪声相当敏感。
非接触被动式扫描
被动式扫描仪本身并不发射任何辐射线(如激光),而是以测量由待测物表面反射周遭辐射线的方法,达到预期的效果。由于环境中的可见光辐射,是相当容易获取并利用的,大部分这类型的扫描仪以侦测环境的可见光为主。但相对于可见光的其他辐射线,如红外线,也是能被应用于这项用途的。因为大部分情况下,被动式扫描法并不需要规格太特殊的硬件支持,这类被动式产品往往相当便宜。
立体视觉法(Stereoscopic)
传统的立体成像系统使用两个放在一起的摄影机,平行注视待重建之物体。此方法在概念上,类似人类借由双眼感知的视频相叠推算深度(当然实际上人脑对深度信息的感知历程复杂许多),若已知两个摄影机的彼此间距与焦距长度,而截取的左右两张图片又能成功叠合,则深度信息可迅速推得。此法须仰赖有效的图片像素匹配分析(correspondence analysis),一般使用区块比对(block matching)或对极几何(epipolar geometry)算法达成。
使用两个摄影机的立体视觉法又称做双眼视觉法(binocular),另有三眼视觉(trinocular)与其他使用更多摄影机的延伸方法。
色度成形法(Shape from Shading)
早期由B.K.P. Horn等学者提出,使用视频像素的亮度值代入预先设计之色度模型中求解,方程式之解即深度信息。由于方程组中的未知数多过限制条件,因此须借由更多假设条件缩小解集之范围。例如加入表面可微分性质(differentiability)、曲率限制(curvatureconstraint)、光滑程度(smoothness)以及更多限制来求得精确的解。此法之后由Woodham派生出立体光学法。
立体光学法(Photometric Stereo)
为了弥补光度成形法中单张照片提供之信息不足,立体光学法采用一个相机拍摄多张照片,这些照片的拍摄角度是相同的,其中的差别是光线的照明条件。最简单的立体光学法使用三盏光源,从三个不同的方向照射待测物,每次仅打开一盏光源。拍摄完成后再综合三张照片并使用光学中的完美漫射(perfect diffusion)模型解出物体表面的梯度向量(gradients),经过向量场的积分后即可得到三维模型。此法并不适用于光滑而不近似于朗伯表面(Lambertian surface)的物体。
轮廓法
此类方法是使用一系列物体的轮廓线条构成三维形体。当物体的部分表面无法在轮廓线上展现时,重建后将丢失三维信息。常见的方式是将待测物放置于电动转盘上,每次旋转一小角度后拍摄其视频,再经由视频处理技巧去除背景并取出轮廓线条,搜集各角度之轮廓线后即可“刻划”成三维模型。
用户辅助
另外有些方法在重建过程中需要用户提供信息,借助人类视觉系统之独特性能,辅助完成重建程序。这些方式都是基于照片摄影原理,针对同个物体拍摄视频以推算三维信息。另一种类似的方式是全景重建(panoramicreconstruction),乃是在定点上拍摄四周视频使之得以重建场景环境。
应用
在马德罗丹制作的3D自拍,由Shapeways3D打印。Fantasitron 3D自拍的照片展台
逆向工程
逆向工程,是一种技术过程,即对一项目标产品进行逆向分析及研究,从而演绎并得出该产品的处理流程、组织结构、功能性能规格等设计要素,以制作出功能相近,但又不完全一样的产品。逆向工程源于商业及军事领域中的硬件分析。其主要目的是,在不能轻易获得必要的生产信息下,直接从成品的分析,推导出产品的设计原理。 逆向工程可能会被误认为是对知识产权的严重侵害,但是在实际应用上,反而可能会保护知识产权所有者。例如在集成电路领域,如果怀疑某公司侵犯知识产权,可以用逆向工程技术来查找证据。
三维扫描仪选择指南
三维扫描的技术应用
三维扫描技术主要应用于以下几个方面:
1. 逆向工程实训室教学
2. 逆向工程(RE)/快速成型(RP)
3. 扫描实物,建立CAD数据;或是扫描模型,建立用于检测部件表面的三维数据。
4. 对于不能使用三维CAD数据的部件,建立数据。
5. 竞争对手产品与自己产品的确认与比较,创建数据库。
6. 使用由RP创建的真实模型,建立和完善产品设计。
7. 有限元分析的数据捕捉。
8. 检测(CAT)/CAE
9. 生产线质量控制和产品元件的形状检测
例如:金属铸件和锻造、加工冲模和浇铸、塑料部件(压塑模、滚塑模、注塑模)、钢板冲压、木制品、复合及泡沫产品。
10. 文物的录入和电子展示
11. 牙齿及畸齿矫正
12. 整容及上颌面手术