如何证明勾股定理?
简单的勾股定理的证明方法如下:
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形。
发现四个直角三角形和一个边长为a的正方形和一个边长为b的正方形,刚好可以组成边长为(a+b)的正方形;四个直角三角形和一个边长为c的正方形也刚好凑成边长为(a+b)的正方形。
所以可以看出以上两个大正方形面积相等。 列出式子可得:
拓展资料:
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
参考资料:勾股定理_百度百科
勾股定理的证明方法是?
勾股定理的证明方法如下
设△ABC为一直角三角形,其直角为∠CAB。其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。
画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。
分别连接CF、AD,形成△BCF、△BDA。
∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。
因为∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。
因为AB=FB,BD=BC,所以△ABD≌△FBC。
因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。
因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。
因此四边形BDLK=BAGF=AB²。
同理可证,四边形CKLE=ACIH=AC²。
把这两个结果相加,AB²+AC²=BD×BK+KL×KC
由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC
由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。
扩展资料:
勾股定理的意义
1、勾股定理的证明是论证几何的发端。
2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理。
3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解。
4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理。
勾股定理的证明方法
勾股定理的多种证明方法
勾股定理的10种证明方法:课本上的证明
勾股定理的10种证明方法:邹元治证明
勾股定理的10种证明方法:赵爽证明
勾股定理的10种证明方法:1876年美国总统Garfield证明
勾股定理的10种证明方法:项明达证明
勾股定理的10种证明方法:欧几里得证明
勾股定理的10种证明方法:杨作玫证明
勾股定理的10种证明方法:切割定理证明
勾股定理的10种证明方法:直角三角形内切圆证明
勾股定理的10种证明方法:反证法证明
扩展资料:
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。
勾股数组是满足勾股定理的正整数组,其中的称为勾股数。例如就是一组勾股数组。任意一组勾股数可以表示为如下形式:,,,其中均为正整数,且。
定理用途:已知直角三角形两边求解第三边,或者已知三角形的三边长度,证明该三角形为直角三角形或用来证明该三角形内两边垂直。利用勾股定理求线段长度这是勾股定理的最基本运用。
意义:
1.勾股定理的证明是论证几何的发端;
2.勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;
3.勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;
4.勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理。
勾股定理的几种证明方法
勾股定理常用的公式就一个,就是a的平方加上b的平方等于c的平方,如果直角三角形两直角边分别为a,b,斜边为C,那么公式就是:a²+b²=c²。
勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理的逆定理:如果三角形三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形,其中c为斜边。即直角三角形两直角边长的平方和等于斜边长的平方。
欧几里得证法
在欧几里得的《几何原本》一书中给出勾股定理的以下证明。设△ABC为一直角三角形,其中A为直角。从A点画一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。
在这个定理的证明中,我们需要如下四个辅助定理:
如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS)
三角形面积是任一同底同高之平行四边形面积的一半。
任意一个正方形的面积等于其二边长的乘积。
任意一个矩形的面积等于其二边长的乘积(据辅助定理3)。
勾股定理的证明方法
勾股定理的证明方法:
1、以a b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于2分之一ab。
2、AEB三点在一条直线上,BFC三点在一条直线上,CGD三点在一条直线上。
3、证明四边形EFGH是一个边长为c的正方形后即可推出勾股定理。
勾股定理的意义
1、勾股定理的证明是论证几何的发端。
2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理。
3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解。
4、勾股定理是历史上第一个给出了完全解答的不定方程,它引出了费马大定理。
5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值。这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。
本文发布于:2023-02-28 19:44:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167763099869384.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:勾股定理的证明(勾股定理的证明方法最简单的6种).doc
本文 PDF 下载地址:勾股定理的证明(勾股定理的证明方法最简单的6种).pdf
留言与评论(共有 0 条评论) |