抛物线的准线方程(抛物线的准线方程公式和焦点)

更新时间:2023-03-01 07:59:46 阅读: 评论:0

抛物线准线方程是什么?

抛物线准线方程如下:

焦点在y轴上,抛物线:2px=y^2,它的准线为:y=-p/2。

焦点在x轴上,抛物线:2py=x^2,它的准线为:x=-p/2。

抛物线的相关结论:

当A(x1,y1),B(x2,y2),A,B在抛物线y2=2px上,则有:

直线AB过焦点时,x1x2= p²/4 , y1y2= -p²;(当A,B在抛物线x²=2py上时,则有x1x2= -p² , y1y2= p²/4 , 要在直线过焦点时才能成立)。

相关信息:

抛物线是指平面内到一个定点(焦点)和一条定直线(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示,标准方程表示等等。

它在几何光学和力学中有重要的用处。 抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。抛物线在合适的坐标变换下,也可看成二次函数图像。

抛物线的一个描述涉及一个点(焦点)和一条线(该线)。焦点并不在于准则。抛物线是该平面中与阵线和焦点等距的点的轨迹。抛物线的另一个描述是作为圆锥截面,由右圆锥形表面和平行于与锥形表面相切的另一平面的平面的交点形成。第三个描述是代数。


抛物线的准线方程是什么?

焦点在y轴上,抛物线:2px=y^2,它的准线为:y=-p/2。

焦点在x轴上,抛物线:2py=x^2,它的准线为:x=-p/2。

抛物线的相关结论:

当A(x1,y1),B(x2,y2),A,B在抛物线y2=2px上,则有:

直线AB过焦点时,x1x2= p²/4 , y1y2= -p²;(当A,B在抛物线x²=2py上时,则有x1x2= -p² , y1y2= p²/4 , 要在直线过焦点时才能成立)。

对称解题:

我们知道,抛物线y = ax^2 + bx + c ( a ≠0 )是轴对称图形,它的对称轴是直线x = - b/ 2a ,它的顶点在对称轴上。解决有关抛物线的问题时,若能巧用抛物线的对称性,则常可以给出简捷的解法。

例:已知抛物线的对称轴是x =1,抛物线与y轴交于点(0,3),与x轴两交点间的距离为4,求此抛物线的解析式。

分析 设抛物线的解析式为y = ax^2 + bx + c 。若按常规解法,则需要解关于a、b、c的三元一次方程组,变形过程比较繁杂;若巧用抛物线的对称性,解法就简捷了。

因为抛物线的对称轴为x =1,与x轴两交点间的距离为4,由抛物线的对称性可知,它与x轴交于A(-1,0)、B(3,0)两点。于是可设抛物线的解析式为y = a(x+1)(x-3)。又因为抛物线与y轴交于点(0,3),所以3 = -3a。故a =-1。


抛物线的准线方程怎么算

根据抛物线方程
1、求出顶点坐标
2、求出焦点坐标
3、根据抛物线定义:动点到定点(焦点)和定直线(准线)的距离相等。以及上述求出准线方程。
说明:准线垂直于定点、焦点的连线。
如:y²=ax 准线方程为:x=-a/4
x²=ay 准线方程为:y=-a/4
二次函数y=ax²+bx+c的
准线方程为:
y=(4ac-b²)/4ac -a/4
供参考,请笑纳。

抛物线 的准线方程是 ...

抛物线的准线方程是x=-p/2或者p/2。

抛物线(以开口向右为例) y^2=2px(p>0)(亦可定义成:当动点P到焦点F和到定直线X=Xo的距离之比恒等于1时,该直线是抛物线的准线。)

准线方程: x=-p/2

设抛物线上P点坐标(x0,y0)c/a=(xo+p/2) /丨PF丨=1

x^2=2py(p>0)时。准线方程为y=-p/2

扩展资料:

双曲线准线方程:

双曲线上P点坐标(x0,y0)c/a=(xo+p/2) /丨PF丨>1

对于双曲线方程(以焦点在X轴为例)( x^2/a^2-y^2/b^2=1 (a,b>0)亦可定义成:当动点P到定点O和到定直线X=Xo的距离之比为离心率时,该直线便是双曲线的准线。)

准线方程 x=a^2/c x=-a^2/


抛物线的准线方程是什么?

焦点在y轴上它的准线为y=-p/2 焦点在x轴上它的准线为x=-p/2。

抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。

抛物线是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线,在合适的坐标变换下,可看成二次函数图像,它有参数表示、标准方程表示等表示方法,在几何光学和力学中有重要用处。

简介:

在数学中,抛物线是一个平面曲线,它是镜像对称的,并且当定向大致为U形(如果不同的方向,它仍然是抛物线),它适用于几个表面上不同的数学描述中的任何一个,这些描述都可以被证明是完全相同的曲线。


抛物线抛物线的一个描述涉及一个点(焦点)和一条线(该线),焦点并不在于准线,抛物线是该平面中与阵线和焦点等距的点的轨迹,抛物线的另一个描述是作为圆锥截面,由右圆锥形表面和平行于与锥形表面相切的另一平面的平面的交点形成,第三个描述是代数。


抛物线准线方程公式是什么?

抛物线的准线方程公式:y=-p/2。

平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。

抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示、标准方程表示等等。

抛物线的知识点:

1、准线、焦点:抛物线是平面内到一定点和到一条不过此点的定直线的距离相等的点的轨迹。这一定点叫做抛物线的焦点,定直线叫做抛物线的准线。

2、轴:抛物线是轴对称图形,它的对称轴简称轴。

3、弦:抛物线的弦是连接抛物线上任意两点的线段。

4、焦弦:抛物线的焦弦是经过抛物线焦点的弦。

5、正焦弦:抛物线的正焦弦是垂直于轴的焦弦。

6、直径:抛物线的直径是抛物线一组平行弦中点的轨迹。这条直径也叫这组平行弦的共轭直径。


本文发布于:2023-02-28 19:42:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/167762878666194.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:抛物线的准线方程(抛物线的准线方程公式和焦点).doc

本文 PDF 下载地址:抛物线的准线方程(抛物线的准线方程公式和焦点).pdf

标签:准线   抛物线   方程   公式   焦点
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|