matlab神经网络(matlab神经网络43个案例分析)

更新时间:2023-03-01 07:26:04 阅读: 评论:0

matlab中的BP神经网络

从原理上来说,神经网络是可以预测未来的点的。
实际上,经过训练之后,神经网络就拟合了输入和输出数据之间的函数关系。只要训练的足够好,那么这个拟合的关系就会足够准确,从而能够预测在其他的输入情况下,会有什么样的输出。
如果要预测t=[6
7]两点的R值,先以t=[1
2
3
4
5]作为输入,R=[12
13
14
14
15]作为输出,训练网络。训练完成之后,用t=[2
3
4
5
6]作为输入,这样会得到一个输出。不出意外的话,输出的数组应该是[13
14
14
15
X],这里的X就是预测t=6时的R值。然后以t=[3
4
5
6
7]作为输入,同理得到t=7时候的R值。
根据我的神经网络预测,t=6时,R=15,t=7时,R=15。我不知道这个结果是否正确,因为神经网络通常需要大量的数据来训练,而这里给的数据似乎太少,可能不足以拟合出正确的函数。

MATLAB中一些函数,用于神经网络

一:minmax()

minmax(A) 即是求解A矩阵中每个 行向量 中的最小值和最大值

eg:A=[1 2 4 -6 ;

             3 -4 90 6;

             4 6 -23 -35];

         P=minmax(A)

         P = -6    4

              -4    90

              -35    6

二:hold on 和hold off

hold on 是当前轴及图像保持而不被刷新,准备接受此后将绘制的图形,多图共存.即,启动图形保持功能,当前坐标轴和图形都将保持,从此绘制的图形都将添加在这个图形的基础上,并自动调整坐标轴的范围。

hold off 使当前轴及图像不再具备被刷新的性质,新图出现时,取消原图。即,关闭图形保持功能。

hold on 和hold off,是相对使用的

前者的意思是,你在当前图的轴(坐标系)中画了一幅图,再画另一幅图时,原来的图还在,与新图共存,都看得到

后者表达的是,你在当前图的轴(坐标系)中画了一幅图,此时,状态是hold off,则再画另一幅图时,原来的图就看不到了,在轴上绘制的是新图,原图被替换了。

三:rand 和 randn

rand是0-1的均匀分布,randn是均值为0方差为1的正态分布;

rand(n)或randn(n)生成n*n的随机数矩阵。

rand(n,m)或randn(m,n)生成m*n的随机数矩阵。

四:gac、gca 和 gco

gcf 返回当前Figure对象的句柄值

gca 返回当前axes对象的句柄值

gco 返回当前鼠标单击的句柄值,该对象可以是除root对象外的任意图形对象,并且Matlab会把当前图形对象的句柄值存放在Figure的CurrentObject属性中。

五:compet

compet是神经网络的竞争传递函数,用于指出矩阵中每列的最大值。对应最大值的行的值为1,其他行的值都为0。

六:bar和barn

二维条形图:bar()

bar(Y) 如果Y为矢量,其每一个元素绘制一个条形;如果Y为矩阵,侧bar函数对每一行元素绘制的条形进行分组。

bar(x,Y) 按x中指定的位置绘制Y中每一元素的条形。

bar(…,width) 设置相邻条形的宽度并控制组内条形的分离,默认值为0.8,如果指定width=1,则组内的条形挨在一起。

bar(…,’style’) 指定绘制条形的类型,style有两个选项:(1) stacked 矩阵Y中每一行绘制一个条形,条形的高度为行元素中元素的和,每一个条形都用多种颜色表示,颜色对应不同种类的元素并表示每行元素对总和的相对贡献。(2) group 绘制n条形图组,每一个条形组中有m个垂直条形,其中n对应矩阵Y的行数,m对应列数,group为style的默认值。

bar(…,LineSpec) 用LineSpec指定的颜色绘制条形。

h=bar(…) 返回图形句柄。

barh(…) 绘制水平条形图。

h=barh(…) 返回水平条形图的图形句柄。

三维条形图:bar3()和barah()

bar3(Y) 绘制三维条形图,如果Y为矢量,其每一个元素绘制一个条形;如果Y为矩阵,侧bar函数对每一行元素绘制的条形进行分组。

bar3(x,Y) 按x中指定的位置绘制Y中每一元素的条形。

bar3(…,width) 设置相邻条形的宽度并控制组内条形的分离,默认值为0.8,如果指定width=1,则组内的条形挨在一起。

bar3(…,’style’) 指定绘制条形的类型,style有3个选项:(1) stacked 矩阵Y中每一行绘制一个条形,条形的高度为行元素中元素的和,每一个条形都用多种颜色表示,颜色对应不同种类的元素并表示每行元素对总和的相对贡献。(2) group 绘制n条形图组,每一个条形组中有m个垂直条形,其中n对应矩阵Y的行数,m对应列数,group为style的默认值。(3) detached 在x方向用单独的条形块绘制Y中的每一行元素,detached为style的默认值;

bar3(…,LineSpec) 用LineSpec指定的颜色绘制条形。

h=bar3(…) 返回三维条形图的图形句柄。

barh(…) 绘制三维水平条形图。

h=barh(…) 返回三维水平条形图的图形句柄。

三维条形图有两种显示形式:分组形式和行列形式。

未完待续

matlab训练神经网络,performance图中的best曲线意思是什么?表示达到最小精度了么?

精度是自己设定的,是那个水平的直线,这里的神经网络没有best曲线,就是个goal和training两条的。是训练过程中的误差曲线,表示经过X次训练,感知器输出达到目标值,也就是感知器的输出已经和目标向量一致了。

每一代BP训练过程的MSE指标的性能,每一代BP交叉验证过程的MSE指标shu的性能以及BP测试的MSE指标在每一代中执行的过程。 特别是,应该注意内部的TEST红线,这是BP计算/训练结果。

扩展资料:

BP(Back Propagation)神经网络是由Rumelhart和McCelland领导的一组科学家于1986年提出的。BP(Back Propagation)是由反向传播误差反向传播算法训练的多层前馈网络,是使用最广泛的神经网络模型之一。

BP网络可以学习并存储大量的输入-输出模式映射关系,而无需事先揭示描述这些映射关系的数学方程式。 BP网络的学习规则是使用最速下降法,并通过反向传播来不断调整网络的权重和阈值,以最小化网络的平方误差之和。 BP神经网络模型的拓扑包括输入层,隐藏层和输出层。

参考资料来源:百度百科-BP神经网络


matlab神经网络工具箱训练出来的函数,怎么输出得到函数代码段

这样:

clear;

%输入数据矩阵

p1=zeros(1,1000);

p2=zeros(1,1000);

%填充数据

for i=1:1000

p1(i)=rand;

p2(i)=rand;

end

%输入层有两个,样本数为1000

p=[p1;p2];

%目标(输出)数据矩阵,待拟合的关系为简单的三角函数

t = cos(pi*p1)+sin(pi*p2);

%对训练集中的输入数据矩阵和目标数据矩阵进行归一化处理

[pn, inputStr] = mapminmax(p);

[tn, outputStr] = mapminmax(t);

%建立BP神经网络

net = newff(pn, tn, [200,10]);

%每10轮回显示一次结果

net.trainParam.show = 10;

%最大训练次数

net.trainParam.epochs = 5000;

%网络的学习速率

net.trainParam.lr = 0.05;

%训练网络所要达到的目标误差

net.trainParam.goal = 10^(-8);

%网络误差如果连续6次迭代都没变化,则matlab会默认终止训练。为了让程序继续运行,用以下命令取消这条设置

net.divideFcn = '';

%开始训练网络

net = train(net, pn, tn);

%训练完网络后要求网络的权值w和阈值b

%获取网络权值、阈值

netiw = net.iw;

netlw = net.lw;

netb = net.b;

w1 = net.iw{1,1}; %输入层到隐层1的权值

b1 = net.b{1} ; %输入层到隐层1的阈值

w2 = net.lw{2,1}; %隐层1到隐层2的权值

b2 = net.b{2} ; %隐层1到隐层2的阈值

w3 = net.lw{3,2}; %隐层2到输出层的权值

b3 = net.b{3} ;%隐层2到输出层的阈值

%在默认的训练函数下,拟合公式为,y=w3*tansig(w2*tansig(w1*in+b1)+b2)+b3;

%用公式计算测试数据[x1;x2]的输出,输入要归一化,输出反归一化

in = mapminmax('apply',[x1;x2],inputStr);

y=w3*tansig(w2*tansig(w1*in+b1)+b2)+b3;

y1=mapminmax('rever',y,outputStr);

%用bp神经网络验证计算结果

out = sim(net,in);

out1=mapminmax('rever',out,outputStr);

扩展资料:

注意事项

一、训练函数

1、traingd

Name:Gradient descent backpropagation (梯度下降反向传播算法 )

Description:triangd is a network training function that updates weight and bias values according to gradient descent.

2、traingda

Name:Gradient descentwith adaptive learning rate backpropagation(自适应学习率的t梯度下降反向传播算法)

Description:triangd is a network training function that updates weight and bias values according to gradient descent with adaptive learning rate.it will return a trained net (net) and the trianing record (tr).

3、traingdx (newelm函数默认的训练函数)

name:Gradient descent with momentum and adaptive learning rate backpropagation(带动量的梯度下降的自适应学习率的反向传播算法)

Description:triangdx is a network training function that updates weight and bias values according to gradient descent momentumand an adaptive learning rate.it will return a trained net (net) and the trianing record (tr).

4、trainlm

Name:Levenberg-Marquardtbackpropagation(L-M反向传播算法)

Description:triangd is a network training function that updates weight and bias values according toLevenberg-Marquardt optimization.it will return a trained net (net) and the trianing record (tr).

注:更多的训练算法请用matlab的help命令查看。

二、学习函数

1、learngd

Name:Gradient descent weight and bias learning function(梯度下降的权值和阈值学习函数)

Description:learngd is the gradient descentweight and bias learning function, it willreturn theweight change dWand a new learning state.

2、learngdm

Name:Gradient descentwith momentumweight and bias learning function(带动量的梯度下降的权值和阈值学习函数)

Description:learngd is the gradient descentwith momentumweight and bias learning function, it willreturn the weight change dW and a new learning state.

注:更多的学习函数用matlab的help命令查看。

三、训练函数与学习函数的区别

函数的输出是权值和阈值的增量,训练函数的输出是训练好的网络和训练记录,在训练过程中训练函数不断调用学习函数修正权值和阈值,通过检测设定的训练步数或性能函数计算出的误差小于设定误差,来结束训练。

或者这么说:训练函数是全局调整权值和阈值,考虑的是整体误差的最小。学习函数是局部调整权值和阈值,考虑的是单个神经元误差的最小。

它的基本思想是学习过程由信号的正向传播与误差的反向传播两个过程组成。

正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师信号)不符,则转入误差的反向传播阶段。

反向传播时,将输出以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。


如何利用matlab进行神经网络预测

matlab 带有神经网络工具箱,可直接调用,建议找本书看看,或者MATLAB论坛找例子。
核心调用语句如下:
%数据输入

%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%% BP网络训练
% %初始化网络结构
net=newff(inputn,outputn,[8 8]);
net.trainParam.epochs=100;
net.trainParam.lr=0.01;
net.trainParam.goal=0.01;
%网络训练
net=train(net,inputn,outputn);
%% BP网络预测
%预测数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
%网络预测输出
an=sim(net,inputn_test);
%网络输出反归一化
BPoutput=mapminmax('rever',an,outputps);
%% 结果分析

本文发布于:2023-02-28 19:39:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/167762676467500.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:matlab神经网络(matlab神经网络43个案例分析).doc

本文 PDF 下载地址:matlab神经网络(matlab神经网络43个案例分析).pdf

相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|