分式方程的解法(分式方程的解法视频)

更新时间:2023-03-01 06:50:11 阅读: 评论:0

分式方程的解法和技巧

1.一般法
所谓一般法,就是先去分母,将分式方程转化为一个整式方程。然后解这个整式方程。

原方程就是
方程两边同乘以(x+3)(x-3),约去分母,得4(x-3)+x(x+3)=x2-9-2x。
2.换元法
换元法就是恰当地利用换元,将复杂的分式简单化。
分析
本方程若去分母,则原方程会变成高次方程,很难求出方程的

设x2+x=y,原方程可变形为
解这个方程,得y1=-2,y2=1。
当y=-2时,x2+x=-2。
∵Δ<0,∴该方程无实根;
当y=1时,x2+x=1,

经检验,
是原方程的根,所以原方程的根是

3.分组结合法
就是把分式方程中各项适当结合,再利用因式分解法或换元法来简化解答过程。
4.拆项法
拆项法就是根据分式方程的特点,将组成分式方程的各项或部分项拆项,然后将同分母的项合并使原方程简化。特别值得指出的是,用此法解分式方程很少有增根现象。
例4
解方程

将方程两边拆项,得
即x=-3是原方程的根。
5.因式分解法
因式分解法就是将分式方程中的各分式或部分分式的分子、分母分解因式,从而简化解题过程。

将各分式的分子、分母分解因式,得
∵x-1≠0,∴两边同乘以x-1,得
检验知,它们都是原方程的根。所以,原方程的根为x1=-1,x2=0。
6.配方法
配方法就是先把分式方程中的常数项移到方程的左边,再把左边配成一个完全平方式,进而可以用直接开平方法求解。
∴x2±6x+5=0,
解这个方程,得x=±5,或x=±1。
检验知,它们都是原方程的根。所以,原方程的根是x1=5,x2=-5,x3=1,x4=-1。
7.应用比例定理
上述例5,除了用因式分解法外,还可以应用合比和等比定理来解。下面以合比定理为例来说明。
∴x(x2-3x+2)-x(2x2-3x+1)=0,

x(x2-1)=0,
∴x=0或x=±1。
检验知,x=1是原方程的增根。所以,原方程的根是x1=0,x2=-1。

分式方程的解法

分式方程的解法如下:

1、第一步,去分母,方程两边同乘各分母的最简公分母

2、第二步,去括号,系数分别乘以括号里的数。

3、第三步,移项,含有未知数的式子移动到方程左边,常数移动到方程右边。

4、第四步,合并同类项。

5、第五步,系数化为1。


怎么解分式方程

您好,楼主:
很高心为您解答
分母里含有未知数的方程叫做分式方程。
分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。否则这个根就是原分式方程的根。
解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法。
注意
(1)注意去分母时,不要漏乘整式项。
(2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。
(3)増根使最简公分母等于0。
不懂可以追问
望楼主采纳

分式方程的解法是什么?

一、因式分解法:

因式分解法就是将分式方程中的各分式或部分分式的分子、分母分解因式,从而简化解题过程。

解:

将各分式的分子、分母分解因式,得

∵x-1≠0,∴两边同乘以x-1,得

检验知,它们都是原方程的根。所以,原方程的根为x1=-1,x2=0。

二、配方法:

配方法就是先把分式方程中的常数项移到方程的左边,再把左边配成一个完全平方式,进而可以用直接开平方法求解。

∴x2±6x+5=0

解这个方程,得x=±5,或x=±1。

检验知,它们都是原方程的根。所以,原方程的根是x1=5,x2=-5,x3=1,x4=-1。

扩展资料:

如果分式本身约分了,也要代入进去检验。

在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。

一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解。

参考资料来源:百度百科-分式方程


分式方程应如何解

分式方程是方程中的一种,且分母里含有未知数的(有理)方程叫做分式方程(fractional
equation)。等号两边至少有一个分母含有未知数的有理方程叫做分式方程。分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。否则这个根就是原分式方程的根

分式方程的解法是什么?

1、把未知数的值代入原方程

2、左边等于多少,是否等于右边

3、判断未知数的值是不是方程的解。

例如:4.6x=23

解:x=23÷4.6

x=5

检验:

把×=5代入方程得:

左边=4.6×5

=23=右边

所以,x=5是原方程的解。


扩展资料

用因式分解法解一元二次方程的一般步骤:

一、将方程右边化为( 0)

二、方程左边分解为(两个 )因式的乘积

三、令每个一次式分别为( 0)得到两个一元一次方程


本文发布于:2023-02-28 19:37:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/167762461166482.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:分式方程的解法(分式方程的解法视频).doc

本文 PDF 下载地址:分式方程的解法(分式方程的解法视频).pdf

标签:分式   解法   方程   视频
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|