集合的表示方法
集合表示法有:
1、穷举法,就是把集合中的元素全部表示出来,如{1,2}。
2、表达式法,如{x|x>1}。
3、图示法。
常用于表示无限集合,把集合中元素的公共属性用文字,符号或式子等描述出来,写在大括号内,这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}。
集合数学知识点如下:
1、并集:A∪B={x| x∈A或x∈B}。
2、有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
3、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
4、集合中的元素必须是确定的。即确定了一个集合,任何一个元素是不是这个集合的元素也就确定了。
集合的几种表示方法 要求举例
1、列举法
列举法就是将集合的元素逐一列举出来的方式[7]。例如,光学中的三原色可以用集合{红,绿,蓝}表示;由四个字母a,b,c,d组成的集合A可用A={a,b,c,d}表示,如此等等。
列举法还包括尽管集合的元素无法一一列举,但可以将它们的变化规律表示出来的情况。
如和
2、描述法
描述法:用集合所含元素的共同特征表示集合的方法称为描述法。
具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再划一条竖线,在竖线后写出这个集合中元素的共同特征.
例如,由2的平方根组成的集合B可表示为B={x|x2=2}。
3、图像法
图像法,又称韦恩图法、韦氏图法,是一种利用二维平面上的点集表示集合的方法。一般用平面上的矩形或圆形表示一个集合,是集合的一种直观的图形表示法。
4、符号法
有些集合可以用一些特殊符号表示,举例如下:N:非负整数集合或自然数集合{0,1,2,3,…}。
扩展资料
一、描述法表示集合注意:
1、写清楚该集合代表元素的符号.例如,集合{x∈R|x<1}不能写成{x<1}。
2、所有描述的内容都要写在花括号内.例如,{x∈Z|x=2k},k∈Z,这种表达方式就不符合要求,需将k∈Z也写进花括号内,即{x∈Z|x=2k,k∈Z}。
3、在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例如,方程x2-2x+1=0的实数解集可表示为{x∈R|x2-2x+1=0},也可写成{x|x2-2x+1=0}。
二、几种描述法的叙述的集合的差异:
①A={x|y=x2+1};②B={y|y=x2+1};③C={(x,y)|y=x2+1}。
1、由于三个集合的代表元素互不相同,故它们是互不相同的集合。
2、集合A={x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}=R,即A=R;集合B={y|y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,所以{y|y=x2+1}={y|y≥1}。
3、集合C={(x,y)|y=x2+1}的代表元素是(x,y),是满足y=x2+1的数对.可以认为集合C是坐标平面内满足y=x2+1的点(x,y)构成的集合,其实就是抛物线y=x2+1的图象。
参考资料来源:百度百科-集合
集合的表示方法有哪三种?
表示集合的方法通常有四种,即列举法 、描述法 、图像法和符号法 。
1,列举法
列举法就是将集合的元素逐一列举出来的方式[7]。例如,光学中的三原色可以用集合{红,绿,蓝}表示;由四个字母a,b,c,d组成的集合A可用A={a,b,c,d}表示,如此等等。
2,描述法
描述法的形式为{代表元素|满足的性质}。
设集合S是由具有某种性质P的元素全体所构成的,则可以采用描述集合中元素公共属性的方法来表示集合:S={x|P(x)}。例如,由2的平方根组成的集合B可表示为B={x|x2=2}。而有理数和正实数集则可以分别表示为和 。
3,图像法
图像法,又称韦恩图法、韦氏图法,是一种利用二维平面上的点集表示集合的方法。一般用平面上的矩形或圆形表示一个集合,是集合的一种直观的图形表示法 。
4,符号法
有些集合可以用一些特殊符号表示,举例如下:
N:非负整数集合或自然数集合{0,1,2,3,…}
N*或N+:正整数集合{1,2,3,…}
Z:整数集合{…,-1,0,1,…}
Q:有理数集合
Q+:正有理数集合
Q-:负有理数集合
R:实数集合(包括有理数和无理数)
R+:正实数集合
R-:负实数集合
C:复数集合
∅ :空集(不含有任何元素的集合)
扩展资料集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。
现代的集合一般被定义为:由一个或多个确定的元素所构成的整体 。
资料来源:集合(数学概念)_百度百科集合的四种表示方法是什么?
列举法、描述法、图像法、符号法。
1、列举法
列举法就是将集合的元素逐一列举出来的方式。例如,光学中的三原色可以用集合{红,绿,蓝}表示;由四个字母a,b,c,d组成的集合A可用A={a,b,c,d}表示,如此等等。列举法还包括尽管集合的元素无法一一列举,但可以将它们的变化规律表示出来的情况。
2、描述法
描述法的形式为{代表元素|满足的性质}。设集合S是由具有某种性质P的元素全体所构成的,则可以采用描述集合中元素公共属性的方法来表示集合:S={x|P(x)}。
3、图像法
图像法,又称韦恩图法、韦氏图法,是一种利用二维平面上的点集表示集合的方法。一般用平面上的矩形或圆形表示一个集合,是集合的一种直观的图形表示法 。
4、符号法
有些集合可以用一些特殊符号表示,如:N::非负整数集合或自然数集合{0,1,2,3,…}、Z:整数集合{…,-1,0,1,…}、Q:有理数集合、Q+:正有理数集合、Q-:负有理数集合、R:实数集合(包括有理数和无理数)。
扩展资料一、集合的表示
假设有实数x < y:
[x,y] :方括号表示包括边界,即表示x到y之间的数以及x和y;
(x,y):小括号是不包括边界,即表示大于x、小于y的数。
二、集合的特性
1、确定性
给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现 。
2、互异性
一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。
3、无序性
一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。
三、交并集
1、交集定义:由属于A且属于B的相同元素组成的集合,记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}, 如右图所示。注意交集越交越少。若A包含B,则A∩B=B,A∪B=A 。如:集合 {1,2,3} 和 {2,3,4} 的交集为 {2,3}。即{1,2,3}∩{2,3,4}={2,3}。
2、并集定义:由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B},如右图所示。注意并集越并越多,这与交集的情况正相反。
如:集合{1, 2, 3} 和 {2, 3, 4} 的并集是 {1, 2, 3, 4}。数字 9 不属于质数集合 {2, 3, 5, 7, 11, …} 和偶数集合{2, 4, 6, 8, 10, …} 的并集,因为 9 既不是素数,也不是偶数。
参考资料来源:百度百科—集合
集合表示的三种基本方法
集合的表示方法有哪几种
本文发布于:2023-02-28 19:28:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167761731761117.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:集合的表示方法(集合的表示方法有两种分别是).doc
本文 PDF 下载地址:集合的表示方法(集合的表示方法有两种分别是).pdf
留言与评论(共有 0 条评论) |