曲线拟合一般有哪些方法?
曲线拟合一般方法包括:
1、用解析表达式逼近离散数据的方法
2、最小二乘法
拓展资料:
实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。
最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
拟合曲线是什么意思
问题一:什么是曲线拟合,什么意思? :曲线拟合曲线拟合曲线拟合正文用连续曲线近似地刻画或比拟平面上离散点组所表示的坐标之间的函数关系。更广泛地说,空间或高维空间中的相应问题亦属此范畴。在数值分析中,曲线拟合就是用解析表达式逼近离散数据,即离散数据的公式化。实践中,离散点组或数据往往是各种物理问题和统计问题有关量的多次观测值或实验值,它们是零散的,不仅不便于处理,而且通常不能确切和充分地体现出其固有的规律。这种缺陷正可由适当的解析表达式来弥补。数学表述 设给定离散数据 (1)式中xk为自变量x(标量或向量,即一元或多元变量)的取值;yk为因变量y(标量)的相应值。曲线拟合要解决的问题是寻求与(1)的背景规律相适应解析表达式 (2)使它在某种意义下最佳地逼近或拟合(1),?(x,b)称为拟合模型;为待定参数,当b)仅在?中线性地出现时,称模型为线性的,否则为非线性的。
问题二:matlab曲线拟合什么意思? 方法/步骤
运行Matlab软件。
在工作空间中存入变量的实验数据。具体如下:
可以直接用矩阵来存放数据,直接在命令窗口输入
x=[数据x1,数据x2,...,数据xn];
y=[数据y1,数据y2,...,数据yn];
当数据较多时,可以从excel,txt等文件中导入。
把数据存入工作空间后,在命令窗口中输入cftool,回车运行。
在这个拟合工具窗口的左边,选择变量,即分别选择x,y。
选择拟合的曲线类型,一般是线性拟合,高斯曲线,平滑曲线等,根据需要选择。
选择完后会自动完成拟合,并且给出拟合函数表达式。
点击菜单栏中的“file”,选择“print to figure进行画图。
在图形窗口中,可以对图形显示模式进行修改,如添加标题,坐标名称等。
最后得到比较完整的图形曲线。点击”file中的“save进行保存。
问题三:拟合和是什么意思 :曲线拟合曲线拟合曲线拟合正文用连续曲线近似地刻画或比拟平面上离散点组所表示的坐标之间的函数关系。更广泛地说,空间或高维空间中的相应问题亦属此范畴。在数值分析中,曲线拟合就是用解析表达式逼近离散数据,即离散数据的公式化。实践中,离散点组或数据往往是各种物理问题和统计问题有关量的多次观测值或实验值,它们是零散的,不仅不便于处理,而且通常不能确切和充分地体现出其固有的规律。这种缺陷正可由适当的解析表达式来弥补。数学表述 设给定离散数据 (1)式中xk为自变量x(标量或向量,即一元或多元变量)的取值;yk为因变量y(标量)的相应值。曲线拟合要解决的问题是寻求与(1)的背景规律相适应解析表达式 (2)使它在某种意义下最佳地逼近或拟合(1),?(x,b)称为拟合模型;为待定参数,当b)仅在?中线性地出现时,称模型为线性的,否则为非线性的。
问题四:曲线拟合一般有哪些方法? 20分 曲线拟定一般方法包括:
1 用解析表达式逼近离散数据的方法
2 最小二乘法
最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
问题五:excel拟合直线r2什么意思 利用Excel进性线性拟合_百度经验 jingyan.baidu/article/ea24bc39b168c7da62b33119
曲线拟合都有几种方法?
曲线拟合一般方法包括:
1、用解析表达式逼近离散数据;
2、最小二乘法。
相关概念:
曲线拟合:实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。
曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按最小二乘法原理求出变换后变量的直线方程,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程,实现对资料的曲线拟合。
excel拟合曲线怎么做
如下:
品牌型号:戴尔Latitude 7320
系统:Windows 10 home
软件版本:Microsoft Excel 2019
1、首先作出x,y数据的散点图。
2、选中数据点,右击鼠标,在弹出菜单选择添加趋势线这一选项。
3、在新的弹出对话框中,根据数据点的分布趋势,尝试将曲线类型设为多项式,阶次为2,勾选显示公式的复选框。另外也可以设置趋势线的颜色、线型等。
4、点击关闭然后得出拟合曲线。
excel曲线拟合的方法
Excel 中经常需要使用到曲线拟合这个设置,曲线拟合具体该如何使用呢?下面是由我分享的excel曲线拟合的 方法 ,以供大家阅读和学习。
excel曲线拟合的方法:
曲线拟合步骤1:把实验数据输入excel中,两个变量的最好做成两个竖排。选中所有数据,注意不要把文字也选上了。
曲线拟合步骤2:在菜单栏中点“插入”,然后选择“散点图”下面的下拉菜单。
曲线拟合步骤3:从菜单中选择自己需要的类型,一般选择既有数据点,又有平滑曲线的散点图。就能得到平滑曲线。
曲线拟合步骤4:多项式拟合(线性,指数,幂,对数也类似):
选取数据;
插入,散点图;
选择只有数据点的类型;
就能得到第二张图所示的数据点。
曲线拟合步骤5:点击一个点,会选中所有数据点,然后点右键,在弹出的菜单中选择“添加趋势线”。
曲线拟合步骤6:在这里可以选择需要你和的曲线类型,如线性,指数,幂,对数,多项式。。选择多项式。
再把下面的“显示公式”,“显示R平方”的复选框里打√,就能得到需要的曲线,公式,和相对误差。
曲线拟合步骤7:图形格式设置:
生成图形后还有一些问题,比如没有坐标轴名称,没有刻度等。
打开菜单中的设计,点图标布局中的下拉菜单。
曲线拟合步骤8:会看到有很多布局类型的图标,选择自己需要的。比如,图中选的布局是常见的有标题,坐标轴名称的。
曲线拟合步骤9:坐标轴还需要设置:用鼠标点击坐标轴附近的区域,右键,选择“设置坐标轴格式”。
曲线拟合的方法
用Matlab进行曲线拟合步骤:
一、 单一变量的曲线逼近
Matlab有一个功能强大的曲线拟合工具箱 cftool ,使用方便,能实现多种类型的线性、非线性曲线拟合。下面结合我使用的 Matlab R2007b 来简单介绍如何使用这个工具箱。
假设我们要拟合的函数形式是 y=A*x*x + B*x, 且A>0,B>0 。
1、在命令行输入数据:
》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475];
》y=[5 10 15 20 25 30 35 40 45 50];
2、启动曲线拟合工具箱 》cftool
3、进入曲线拟合工具箱界面“Curve Fitting tool” (1)点击“Data”按钮,弹出“Data”窗口;
(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data t name”,然后点击“Create data t”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图;
(3)点击“Fitting”按钮,弹出“Fitting”窗口;
(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data t”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有: Custom Equations:用户自定义的函数类型
Exponential:指数逼近,有2种类型, a*exp(b*x) 、 a*exp(b*x) + c*exp(d*x) Fourier:傅立叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) + b1*sin(x*w) Gaussian:高斯逼近,有8种类型,基础型是 a1*exp(-((x-b1)/c1)^2)
Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-prerving
Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~
Power:幂逼近,有2种类型,a*x^b 、a*x^b + c
Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型
Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)
Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是 a1*sin(b1*x + c1) Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)
选择好所需的拟合曲线类型及其子类型,并进行相关设置:
——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待估计参数的上下限等参数;
——如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear Equations线性等式”和“General Equations构造等式”两种标签。
在本例中选Custom Equations,点击“New”按钮,选择“General Equations”标签,输入函数类型y=a*x*x + b*x,设置参数a、b的上下限,然后点击OK。
(5)类型设置完成后,点击“Apply”按钮,就可以在Results框中得到拟合结果,如下例: general model: f(x) = a*x*x+b*x
Coefficients (with 95% confidence bounds): a = 0.009194 (0.009019, 0.00937) b = 1.78e-011 (fixed at bound)
Goodness of fit: SSE: 6.146 R-square: 0.997
Adjusted R-square: 0.997 RMSE: 0.8263
同时,也会在工具箱窗口中显示拟合曲线。
这样,就完成一次曲线拟合啦,十分方便快捷。当然,如果你觉得拟合效果不好,还可以在“Fitting”窗口点击“New fit”按钮,按照步骤(4)~(5)进行一次新的拟合。
不过,需要注意的是,cftool 工具箱只能进行单个变量的曲线拟合,即待拟合的公式中,变量只能有一个。对于混合型的曲线,例如 y = a*x + b/x ,工具箱的拟合效果并不好。下一篇文章我介绍帮同学做的一个非线性函数的曲线拟合。