什么是矩阵的秩
第一个角度,也就是书本上的定义,矩阵中的任意一个r阶子式不为0,且任意的r+1阶子式为0,则阶数r就叫作该矩阵的秩。
对一个矩阵,存在某个r阶行列式,值不为0,这个r阶行列式就是对一个矩阵你画r条横线,r条竖线,这个横竖线交叉的元素构成了一个新的数表,这个数表的行列式就叫作这个矩阵的r阶子式。
第二个角度,如果我们把矩阵进行初等行变换,将矩阵变换为一个行阶梯形矩阵后,那么行阶梯形矩阵的非0行就是这个矩阵的秩。这是通过运算的角度来给出的矩阵的秩的定义,对矩阵进行初等行变换后得到的行阶梯形矩阵的非0行的个数。
第三个角度,是从线性方程组的角度来给出的,我们可以把秩理解为一种约束,因为方程我们就可以理解为约束,当我们把矩阵看成齐次线性方程组的系数的时候,矩阵的秩就是这个方程组里真正存在的方程的个数。
虽然写出了很多个方程,但有一些是没有用的,可以由其他方程来表示的,这些没用的消去之后剩下的真正的约束的个数就是这个矩阵的秩。
第四个角度,将矩阵看成由一个个向量放在一起拼成的,这个秩就是向量组中独立的向量的个数,其实和上述方程组的角度是差不多的。
扩展资料
定理:矩阵的行秩,列秩,秩都相等。
定理:初等变换不改变矩阵的秩。
定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。
定理:矩阵的乘积的秩Rab<=min{Ra,Rb};
引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。
当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。
当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
参考资料来源:百度百科-矩阵的秩
矩阵的秩是怎么定义的,以及为什么要这么定义
矩阵的秩的定义:是其行向量或列向量的极大无关组中包含向量的个数。
能这么定义的根本原因是:矩阵的行秩和列秩相等(证明可利用n+1个n维向量必线性相关)
矩阵的秩的几何意义如下:在n维线性空间V中定义线性变换,可以证明:在一组给定的基下,任一个线性变换都可以与一个n阶矩阵一一对应;而且保持线性;换言之,所有线性变换组成的空间End<F>(V)与所有矩阵组成的空间M(n)<F>是同构的。
扩展资料:
A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。
特别规定零矩阵的秩为零。
显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。
由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)≠0;不满秩矩阵就是奇异矩阵,det(A)=0。
由行列式的性质知,矩阵A的转置AT的秩与A的秩是一样的。
奇异值分解非常有用,对于矩阵A(p*q),存在U(p*p),V(q*q),B(p*q)(由对角阵与增广行或列组成),满足A = U*B*V
U和V中分别是A的奇异向量,而B是A的奇异值。AA'的特征向量组成U,特征值组成B'B,A'A的特征向量组成V,特征值(与AA'相同)组成BB'。因此,奇异值分解和特征值问题紧密联系。
如果A是复矩阵,B中的奇异值仍然是实数。
SVD提供了一些关于A的信息,例如非零奇异值的数目(B的阶数)和A的阶数相同,一旦阶数确定,那么U的前k列构成了A的列向量空间的正交基。
参考资料来源:百度百科——矩阵的秩
矩阵的秩是什么?请举例说明 我不太懂
秩是一个数,并且是一个自然数,只能取 0,1,2,3,4,当我们说一个矩阵的秩是几的时候,我们到底在说什么?
矩阵中的任意一个r阶子式不为0,且任意的r+1阶子式为0,则阶数r就叫作该矩阵的秩。就是对一个矩阵,存在某个r阶行列式,值不为0,这个r阶行列式就是对一个矩阵你画r条横线,r条竖线,这个横竖线交叉的元素构成了一个新的数表,这个数表的行列式就叫作这个矩阵的r阶子式。
如果把矩阵进行初等行变换,将矩阵变换为一个行阶梯形矩阵后,那么行阶梯形矩阵的非0行就是这个矩阵的秩。这是通过运算的角度来给出的矩阵的秩的定义,对矩阵进行初等行变换后得到的行阶梯形矩阵的非0行的个数。
扩展资料
定理:矩阵的行秩,列秩,秩都相等。
定理:初等变换不改变矩阵的秩。
定理:矩阵的乘积的秩Rab<=min{Ra,Rb};
引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。
当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。
当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零。)
参考资料来源:百度百科-矩阵的秩
什么叫矩阵的秩?
原因如下:
设 A是 m×n 的矩阵,可以通过证明 Ax=0 和A'Ax=0 两个n元齐次方程同解证得 r(A'A)=r(A)。
1、Ax=0 肯定是 A'Ax=0 的解,好理解。
2、A'Ax=0 → x'A'Ax=0 → (Ax)' Ax=0 →Ax=0。
故两个方程是同解的。
同理可得 r(AA')=r(A')。
另外 有 r(A)=r(A')。
所以综上 r(A)=r(A')=r(AA')=r(A'A)。
矩阵的秩不等式
(1)矩阵A的秩等于矩阵A的转置的秩,也即矩阵的行秩=列秩。
证明思路:一个矩阵经过一系列初等变换,都可以对应到一个标准型,而标准型的非零行数就是矩阵的秩。又因为矩阵的标准型是唯一的,所以矩阵的行秩与矩阵的列秩一定相等。
(2)矩阵A的秩等于矩阵A转置乘矩阵A的秩。
证明思路:分别构造构造齐次的线性方程组,Ax=0与A转置乘Ax=0同解。因为可以使用前面一个方程式子推到后面一个方程式,反之,倒过来也成立。两个方程组同解,故秩相等,即得到证明。
什么是矩阵的秩
行列式的秩如下:
对于行列式来说,非零子式的最高阶数就是它的秩。矩阵的秩用来表示一种矩阵结构,表示矩阵的某些行能否被其他行代替。
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。
行列式的特点:
行列式A中某行用同一数k乘,其结果等于kA。
行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
若n阶行列式|αij|中某行(或列),行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
矩阵的秩怎么计算?
矩阵的秩计算方法:矩阵的行秩,列秩,秩都相等,初等变换不改变矩阵的秩,如果A可逆,则r(AB)=r(B),r(BA)=r(B),矩阵的乘积的秩Rab<=min{Ra,Rb}。
引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n,当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵,当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零。
矩阵的秩的变化规律
(1)转置后秩不变
(2)r(A)<=min(m,n),A是m*n型矩阵
(3)r(kA)=r(A),k不等于0
(4)r(A)=0<=>A=0
(5)r(A+B)<=r(A)+r(B)
(6)r(AB)<=min(r(A),r(B))
(7)r(A)+r(B)-n<=r(AB)
(8)P、Q为可逆矩阵,则r(PAQ)=r(A)
(9)n阶方阵A,若|A|=0,则r(A)<n,否则r(A)=n
(10)若Ax=B有解,则r(A)=r(A,B)
(11)若A~B,则人r(A)=r(B)
(12)若所有n阶子式为零,则r(A)<t(t为A的逆序数)
(13)A中若有S阶非零子式,则r(A)>=S
本文发布于:2023-02-28 19:28:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167761642062713.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:矩阵的秩(矩阵的秩是什么意思).doc
本文 PDF 下载地址:矩阵的秩(矩阵的秩是什么意思).pdf
留言与评论(共有 0 条评论) |