整式的加减有哪些?
整式加减的实质是去括号和合并同类项:
题型一、求几个单项式的和
例:求单项式5x²y,2xy²,-2x²y,-6xy²的和。
解:5x²y+2xy²+(-2x²y)+(-6xy²)
=5x²y+2xy²-2x²y-6xy²
=3x²y-4xy²
说明:求几个单项式的和,首先将几个单项式用加号连接,写成和的形式;然后去括号,再合并同类项。必须注意:如果单项式前面是“-”号,那么该单项式要添加括号。
题型二、求几多项式的和或差
例:求3x²-6x+5与4x²+7x-6的和。
解: (3x²-6x+5)+(4x²+7x -6)
=3x²-6x+5+4x²+7x-6
=7x²+x-1
说明:求几个多项式的和或差,首先用括号把每一个多项式括起来,并用加号或减号连接,然后按照去括号、合并同类项的法则进行计算。必须注意:求两个多项式的差,前面的多项式是被减式,后面的多项式是减式。
整式的乘法:
1、单项式与单项式相乘:
单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
2、单项式与多项式相乘:
单项式与多项式相乘,就是根据分配率用单项式去乘多项式的每一项,再把所得的积相加。
注意:单项式乘多项式实际上是用分配率向单项式相乘转化。
3、多项式与多项式相乘:
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加,即(a+b)(m+n)=am+bm+an+bn。
整式的加减运算法则
整式的加减?
加减法的运算法则:相同数位对齐;从个位算起;加法中满几十就向高一位进几;减法中不够减时,就从高一位退1当10和本数位相加后再减。
乘法的运算法则从个位乘起,依次用第二个因数每位上的数去乘第一个因数;用第二个因数那一位上的数去乘,得数的末位就和第二个因数的那一位对齐;再把几次乘得的数加起来;
加减法的性质:
从加法交换律和结合律可以得到:几个加数相加,可以任意交换加数的位置;或者先把几个加数相加再和其他的加数相加,它们的和不变。
几个数的和减去一个数,可以选其中任一个加数减去这个数,再同其余的加数相加。例如:(35+17+29)-25=35-25+17+29=56。
整式的加减的公式
整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。以下是为大家整理的整式的加减知识点总结,欢迎大家参考借鉴!
整式的加减 :首先是单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。第二是单项式的系数与次数:单项式中的数字因数,称单项式的系数。单项式中所有字母指数的和,叫单项式的次数。最后是多项式:几个单项式的和叫多项式.。
多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;。
同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。合并同类项法则:系数相加,字母与字母的指数不变。
去/添括号法则:去/添括号时,若括号前边是加号,括号里的各项都不变号;若括号前边是减号,括号里的各项都要变号。 一找二加三合并。
多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列
起来,叫做按这个字母的升幂排列(或降幂排列)。
分式 :单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;数不为零时,单项式中所有字母指数的和,叫单项式的次数。
多项式:几个单项式的和叫多项式。多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
整式的加减法则
什么是整式的加减
本文发布于:2023-02-28 19:20:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167760959059336.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:整式的加减(整式的加减计算题).doc
本文 PDF 下载地址:整式的加减(整式的加减计算题).pdf
留言与评论(共有 0 条评论) |