所有的诱导公式
诱导公式是指三角函数中,利用周期性将角度比较大的三角函数,转换为角度比较小的三角函数的公式。诱导公式有54个。下面介绍一下所有的诱导公式:
1、第一组
sin (α+k·360°)=sinα(k∈Z),cos(α+k·360°)=cosα(k∈Z),tan (α+k·360°)=tanα(k∈Z),cot(α+k·360°)=cotα (k∈Z);
c(α+k·360°)=cα (k∈Z),csc(α+k·360°)=cscα (k∈Z)。
2、第二组
sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα,c(π+α)=-cα,csc(π+α)=-cscα。
3、第三组
sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα,cot(-α)=-cotα,c(-α)=cα,csc (-α)=-cscα。
4、第四组
sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα,cot(π-α)=-cotα,c(π-α)=-cα,csc(π-α)=cscα。
5、第五组
sin(2π-α)=-sinα,cos(2π-α)=cosα,tan(2π-α)=-tanα,cot(2π-α)=-cotα,c(2π-α)=cα,csc(2π-α)=-cscα。
6、第六组
sin(π/2+α)=cosα,cos(π/2+α)=-sinα,tan(π/2+α)=-cotα,cot(π/2+α)=-tanα,c(π/2+α)=-cscα,csc(π/2+α)=cα。
记忆规律
公式一到公式五函数名未改变, 公式六函数名发生改变。
公式一到公式五可简记为:函数名不变,符号看象限。即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。
以上内容参考:百度百科-诱导公式
数学诱导公式是什么?
数学诱导公式是三角函数,利用周期性将角度比较大的三角函数,转换为角度比较小的三角函数的公式。诱导公式有六组,共54个。
三角函数诱导公式(Induction formula)是一种数学公式,就是将任意角的三角函数转化为锐角的三角函数。包括一些常用的公式和和差化积公式。
万能公式推导
sin2α=2sinαcosα=2sinαcosα/。
(因为cos²(α)+sin²(α)=1)。
再把分式上下同除cos^2(α),可得sin2α=2tanα/。
然后用α/2代替α即可。
同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。
什么是诱导公式,怎么用,举例
三角函数诱导公式是一种数学公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。包括一些常用的公式和和差化积公式。
诱导公式
公式一:设α为任意角,终边相同的角的同一三角函数的值相等。
sin(2kπ+α)=sinα(k∈Z)。
cos(2kπ+α)=cosα(k∈Z)。
tan(2kπ+α)=tanα(k∈Z)。
cot(2kπ+α)=cotα(k∈Z)。
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系。
sin(π+α)=-sinα。
cos(π+α)=-cosα。
tan(π+α)=tanα。
cot(π+α)=cotα。
公式三:任意角α与-α的三角函数值之间的关系。
sin(-α)=-sinα。
cos(-α)=cosα。
tan(-α)=-tanα。
cot(-α)=-cotα。
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系。
sin(π-α)=sinα。
cos(π-α)=-cosα。
tan(π-α)=-tanα。
cot(π-α)=-cotα。
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系。
sin(2π-α)=-sinα。
cos(2π-α)=cosα。
tan(2π-α)=-tanα。
cot(2π-α)=-cotα。
诱导公式大全?
三角函数诱导公式是什么?
诱导公式是指三角函数中,利用周期性将角度比较大的三角函数,转换为角度比较小的三角函数的公式。 诱导公式有六组,共54个。
公式一
终边相同的角的同一三角函数的值相等。
设α为任意锐角,角度制下的角的表示:
sin (α+k·360°)=sinα(k∈Z). cos(α+k·360°)=cosα(k∈Z).
tan (α+k·360°)=tanα(k∈Z). cot(α+k·360°)=cotα (k∈Z).
c(α+k·360°)=cα (k∈Z). csc(α+k·360°)=cscα (k∈Z).
公式二
π+α的三角函数值与α的三角函数值之间的关系。
设α为任意角,弧度制下的角的表示:
sin(π+α)=-sinα. cos(π+α)=-cosα. tan(π+α)=tanα.
cot(π+α)=cotα. c(π+α)=-cα. csc(π+α)=-cscα.
角度制下的角的表示:
sin(180°+α)=-sinα. cos(180°+α)=-cosα. tan(180°+α)=tanα.
cot(180°+α)=cotα. c(180°+α)=-cα. csc(180°+α)=-cscα
公式三
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα. cos(-α)=cosα. tan(-α)=-tanα.
cot(-α)=-cotα. c(-α)=cα. csc (-α)=-cscα.
公式四
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
弧度制下的角的表示:
sin(π-α)=sinα. cos(π-α)=-cosα. tan(π-α)=-tanα.
cot(π-α)=-cotα. c(π-α)=-cα. csc(π-α)=cscα.
角度制下的角的表示:
sin(180°-α)=sinα. cos(180°-α)=-cosα. tan(180°-α)=-tanα.
cot(180°-α)=-cotα. c(180°-α)=-cα. csc(180°-α)=cscα.
公式五
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
弧度制下的角的表示:
sin(2π-α)=-sinα. cos(2π-α)=cosα. tan(2π-α)=-tanα.
cot(2π-α)=-cotα. c(2π-α)=cα. csc(2π-α)=-cscα.
角度制下的角的表示:
sin(360°-α)=-sinα. cos(360°-α)=cosα. tan(360°-α)=-tanα.
cot(360°-α)=-cotα. c(360°-α)=cα. csc(360°-α)=-cscα.
公式六
π/2±α 及3π/2±α与α的三角函数值之间的关系:(⒈~⒋)
⒈π/2+α与α的三角函数值之间的关系
弧度制下的角的表示:
sin(π/2+α)=cosα. cos(π/2+α)=-sinα. tan(π/2+α)=-cotα.
cot(π/2+α)=-tanα. c(π/2+α)=-cscα. csc(π/2+α)=cα.
角度制下的角的表示:
sin(90°+α)=cosα. cos(90°+α)=-sinα. tan(90°+α)=-cotα.
cot(90°+α)=-tanα. c(90°+α)=-cscα. csc(90°+α)=cα.
⒉ π/2-α与α的三角函数值之间的关系
弧度制下的角的表示:
sin(π/2-α)=cosα. cos(π/2-α)=sinα. tan(π/2-α)=cotα.
cot(π/2-α)=tanα. c(π/2-α)=cscα. csc(π/2-α)=cα.
角度制下的角的表示:
sin (90°-α)=cosα. cos (90°-α)=sinα. tan (90°-α)=cotα.
cot (90°-α)=tanα. c (90°-α)=cscα. csc (90°-α)=cα.
⒊ 3π/2+α与α的三角函数值之间的关系
弧度制下的角的表示:
sin(3π/2+α)=-cosα. cos(3π/2+α)=sinα. tan(3π/2+α)=-cotα.
cot(3π/2+α)=-tanα. c(3π/2+α)=cscα. csc(3π/2+α)=-cα.
角度制下的角的表示:
sin(270°+α)=-cosα. cos(270°+α)=sinα. tan(270°+α)=-cotα.
cot(270°+α)=-tanα. c(270°+α)=cscα. csc(270°+α)=-cα.
⒋3π/2-α与α的三角函数值之间的关系
弧度制下的角的表示:
sin(3π/2-α)=-cosα. cos(3π/2-α)=-sinα. tan(3π/2-α)=cotα.
cot(3π/2-α)=tanα. c(3π/2-α)=-cscα. csc(3π/2-α)=-cα.
角度制下的角的表示:
sin(270°-α)=-cosα. cos(270°-α)=-sinα. tan(270°-α)=cotα.
cot(270°-α)=tanα. c(270°-α)=-cscα. csc(270°-α)=-cα.
口诀:奇变偶不变,符号看象限。
注:奇变偶不变(对k而言,指k取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角)。
公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆:水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.
这十二字口诀的意思就是说:
第一象限内任何一个角的三角函数值都是“+”;
第二象限内只有正弦和余割是“+”,其余全部是“-”;
第三象限内只有正切和余切是“+”,其余函数是“-”;
第四象限内只有正割和余弦是“+”,其余全部是“-”。
一全正,二正弦,三双切,四余弦。
诱导公式1
本文发布于:2023-02-28 19:19:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167760936859213.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:诱导公式(诱导公式大全图片).doc
本文 PDF 下载地址:诱导公式(诱导公式大全图片).pdf
留言与评论(共有 0 条评论) |