不等式的解集(不等式的解集取值范围怎么求)

更新时间:2023-03-01 02:03:16 阅读: 评论:0

不等式的解集是什么?

不等式确定解集:

①比两个值都大,就比大的还大(同大取大);

②比两个值都小,就比小的还小(同小取小);

③比大的大,比小的小,无解(大大小小取不了);

④比小的大,比大的小,有解在中间(小大大小取中间)。

三个或三个以上不等式组成的不等式组,可以类推。

扩展资料

不等式的特殊性质有以下三种:

①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;

②不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;

③不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变。

总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。

不等式的解集

一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集。

不等式的解集

(1)一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集。

(2)不等式解集的表示方法:

① 用不等式表示

② 用数轴表示:大于向右画,小于向左画,有等号的画实心圆点,无等号的画空心圆圈。

③ 求不等式解集的过程,就是解不等式。

求不等式组的解集的方法

(1)把各个不等式的解集表示在数轴上,观察公共部分。

(2)不等式组的解集不外乎以下4种情况:

若a<b,

当x>b时;(同大取大)

当x<a时;(同小取小)

当a<x<b时;(大小小大中间找)

当x<a且x>b时无解,(大大小小无处找)

不等式解集图示

怎么在数轴上表示不等式的解集

1、确定不等式解集的起点

在表示解集时,“≥”和“≤”要用实心圆点表示;“<”和“>”要用空心圆点表示。

2、确定不等式解集的方向

若是“>”和“≥”向右画,“<”和“≤”向左画。

3、确定不等式解集的方向

若是“>”和“<”两条线相向时应该连成闭合范围,否则是开放范围。

满足所有不等式的范围就是在数轴上表示的不等式解集。

4、举例说明

(1)如不等式的解集为x>3,在数轴“3”上画一个空心圆点,从这个空心圆点开始往上画一段垂直线,并向右边画一条与数轴平行的直线,就表示 x>3。

(2)如不等式的解集为x≥3,在数轴“3”上画一个实心圆点,后续步骤依此类推。


不等式的解集怎么求

求不等式的解集可以先把各个不等式的解集表示在数轴上,观察公共部分。然后去括号,移项,合并同类项,系数化为一时要注意到底是除以了一个正数还是负数。

一.步骤

去分母(注意乘以一个正数的公分母,这样就不变号),去括号,移项,合并同类项,系数化为一(这里注意到底是除以了一个正数还是负数)

二.求不等式组的解集的方法:

1、把各个不等式的解集表示在数轴上,观察公共部分。

2、不等式组的解集不外乎以下4种情况:

若a<b,

当x>b时;(同大取大)

当x<a时;(同小取小)

当a<x<b时;(大小小大中间找)

当x<a且x>b时无解,(大大小小无处找)

三.重点:

一元一次不等式组的解法,求公共解集的方法;

四.难点:

1、含有字母系数的不等式组的解集的讨论;

2、一元一次不等式组与二元一次方程组的综合问题。

五.不等式确定解集:

1、比两个值都大,就比大的还大(同大取大);

2、比两个值都小,就比小的还小(同小取小);

3、比大的大,比小的小,无解(大大小小取不了);

4、比小的大,比大的小,有解在中间(小大大小取中间)。

三个或三个以上不等式组成的不等式组,可以类推。

不等式的解集的表示方法

解集的表示法

1、列举法

列举法,又叫外延法。把集合的元素一一列举出来,写在大括号“{ }”内,并用逗号“,”把它们彼此分开。

例如,小于10的素数集合A可表示为A={2,3,5,7}。又如3的自然数幂所组成的集合B可表示为B={3,9,27,…,3n,…}。

在用列举法表示一个无限集或元素很多的集的时候常用省略号。这时,要注意表示的明确性,要能从已经列举的元素中知道被省略的元素是什么。在用列举法表示集合时,元素的次序无关紧要,但不允许重复。

2、描述法

描述法,又称特征性质法或内涵法。利用概括原则指出确定集合元素的特征性质P(x),从而给出集合的方法称为描述法。

具有性质P(x)的所有元素 x 组成的集合A记为A={x|P(x)}或{x:P(x)}。其中P{x}表示集合中元素的特征性质。所谓集合元素的特征性质是指:集合的每个元素的共有的性质,并且不属于这个集合的元素都不具有这个性质。

扩展资料:

性质

方程(组)或不等式(组)的所有解均在其解集中,解集中的所有元素均为方程(组)或不等式(组)的解。无解的方程(组)或不等式(组)的解集为空集。

线性代数里向量(或矩阵)方程的解集是向量(或矩阵),这类元素构成集合,就不能称为区间或区域了。

函数方程(微分方程和积分方程)的解集是函数,解集里的元素都是函数。

对于二元不等式(组)的解集就是一个平面区域。

参考资料:百度百科-解集


不等式的解集介绍 什么是不等式的解集

1、一个含有未知数的不等式的所有解,组成这个不等式的解集,也就是说,满足这个不等式的所有解组成解集。

2、不等式是用不等号将两个解析式连结起来所成的式子。在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式。例如2x+2y≥2xy,sinx≤1,ex>0 ,2xx是超越不等式。

3、组成一元一次不等式组的多个不等式的解集的公共部分叫做一元一次不等式组的解集.

4、一元一次不等式组的定义:由含有同一未知数的多个一元一次不等式组合在一起,叫做是一元一次不等式组。

本文发布于:2023-02-28 19:17:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/167760739656435.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:不等式的解集(不等式的解集取值范围怎么求).doc

本文 PDF 下载地址:不等式的解集(不等式的解集取值范围怎么求).pdf

标签:不等式   解集取值
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|