抛物线所有公式总结是什么?
抛物线所有公式总结是如下:
一般式:ax²+bx+c(a、b、c为常数,a≠0)。
顶点式:y=a(X-h)2+k(a、h、k为常数,a≠0)。
交点式(两根式):y=a(x-x1)(x-x2)(a≠0)。
其中抛物线y=aX2+bX+c(a、b、c为常数,a≠0)与x轴交点坐标,即方程aX2+bX+c=0的两实数根。
抛物线标准方程:
右开口抛物线:y^2=2px。
左开口抛物线:y^2= -2px。
上开口抛物线:x^2=2py y=ax^2(a大于等于0)。
下开口抛物线:x^2= -2py y=ax^2(a小于等于0)。
[p为焦准距(p>0)]。
抛物线所有公式
一般式:y=aX2+bX+c(a、b、c为常数,a≠0)
顶点式:y=a(X-h)2+k(a、h、k为常数,a≠0)
交点式(两根式):y=a(x-x1)(x-x2) (a≠0)
其中抛物线y=aX2+bX+c(a、b、c为常数,a≠0)与x轴交点坐标,即方程aX2+bX+c=0的两实数根。
抛物线四种方程的异同
共同点:
①原点在抛物线上,离心率e均为1 ②对称轴为坐标轴;
③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4。
不同点:
①对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2;
②开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。
切线方程:
抛物线y2=2px上一点(x0,y0)处的切线方程为:。
抛物线y2=2px上过焦点斜率为k的方程为:y=k(x-p/2)。
扩展资料:
A(x1,y1),B(x2,y2),A,B在抛物线y2=2px上,则有:
① 直线AB过焦点时,x1x2= p²/4 , y1y2= -p²;
(当A,B在抛物线x²=2py上时,则有x1x2= -p² , y1y2= p²/4 , 要在直线过焦点时才能成立)
② 焦点弦长:|AB| = x1+x2+P = 2P/[(sinθ)2]=(x1+x2)/2+P;
③ (1/|FA|)+(1/|FB|)= 2/P;(其中长的一条长度为P/(1-cosθ),短的一条长度为P/(1+cosθ))
④若OA垂直OB则AB过定点M(2P,0);
⑤焦半径:|FP|=x+p/2 (抛物线上一点P到焦点F的距离等于P到准线L的距离);
⑥弦长公式:AB=√(1+k2)*│x1-x2│;
⑦△=b2-4ac;
⑴△=b2-4ac>0有两个实数根;
⑵△=b2-4ac=0有两个一样的实数根;
⑶△=b2-4ac<0没实数根。
⑧由抛物线焦点到其切线的垂线的距离是焦点到切点的距离与到顶点距离的比例中项;
⑨标准形式的抛物线在(x0,y0)点的切线是:yy0=p(x+x0)
(注:圆锥曲线切线方程中x²=x*x0 ,y²=y*y0,x=(x+x0)/2 , y=(y+y0)/2 )
参考资料:百度百科——抛物线
抛物线公式
抛物线公式为y=ax^2+bx+c
⑴a 0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点(顶点):( , );
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
( ,0)和( ,0);
Δ=0,图象与x轴交于一点:
( ,0);
Δ<0,图象与x轴无交点;
(5)对称轴(顶点)在y 轴 左侧时 , a ,b 同号 ,对称轴 (顶点 ) 在 y 轴右侧时,a 、b 异号;对称轴(顶点)在y轴上时, b=0,抛物线的顶点在原点时, b=c=0。
(6)当x=0时,可通过与y轴交点判断c值,即若抛物线交y轴为正半轴,则c>0;若抛物线交y轴为负半轴,则c<0
扩展资料
抛物线标准方程右开口抛物线:y^2=2px
左开口抛物线:y^2= -2px
上开口抛物线:x^2=2py y=ax^2(a大于等于0)
下开口抛物线:x^2= -2py y=ax^2(a小于等于0)
[p为焦准距(p>0)]
线段AB的中点为M,点A,M,B在准线l的上的射影分别为A1,M1,B1
抛物线公式大全
抛物线方程是指抛物线的轨迹方程,是一种用方程来表示抛物线的方法。在几何平面上可以根据抛物线的方程画出抛物线。抛物线在合适的坐标变换下,也可看成二次函数图像。
抛物线方程公式
一般式:ax²+bx+c(a、b、c为常数,a≠0)
顶点式:y=a(X-h)2+k(a、h、k为常数,a≠0)
交点式(两根式):y=a(x-x1)(x-x2)(a≠0)
其中抛物线y=aX2+bX+c(a、b、c为常数,a≠0)与x轴交点坐标,即方程aX2+bX+c=0的两实数根。
抛物线标准方程右开口抛物线:y^2=2px
左开口抛物线:y^2= -2px
上开口抛物线:x^2=2py y=ax^2(a大于等于0)
下开口抛物线:x^2= -2py y=ax^2(a小于等于0)
[p为焦准距(p>0)]
抛物线四种方程的异同共同点:
①原点在抛物线上,离心率e均为1;
②对称轴为坐标轴;
③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4。
不同点:
①对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2;
②开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。
初中抛物线公式
抛物线:y = ax^2 + bx + c (a≠0)
就是y等于a乘以x 的平方加上 b乘以x再加上 c
置于平面直角坐标系中,a > 0时开口向上,a < 0时开口向下(a=0时为一元一次函数)
c>0时函数图像与y轴正方向相交
c< 0时函数图像与y轴负方向相交
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴(当然a=0且b≠0时该函数为一次函数)
还有顶点公式y = a(x+h)* 2+ k ,(h,k)=(-b/(2a),(4ac-b^2)/(4a))
就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y
一般用于求最大值与最小值和对称轴
抛物线标准方程:y^2=2px (p>0)
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
抛物线相关公式
本文发布于:2023-02-28 19:12:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167760296355970.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:抛物线公式(抛物线公式推导).doc
本文 PDF 下载地址:抛物线公式(抛物线公式推导).pdf
留言与评论(共有 0 条评论) |