圆锥的体积(圆锥的体积公式推导过程)

更新时间:2023-03-01 00:44:20 阅读: 评论:0

圆锥体积公式是什么?

圆锥的体积公式是:V=1/3Sh或V=1/3πr²h,其中,S是底面积,h是高,r是底边半径。

圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。

一个圆锥的体积相当于与它等底等高线的圆柱的体积的1/3,依据圆柱体积公式V=Sh(V=πr²h),得到圆锥容积公式。


扩展资料

圆锥的性质

(1)平行于底面的截面圆的性质:截面圆面积和底面圆面积的比等于从顶点到截面和从顶点到底面距离的平方比。

(2)过圆锥的顶点,且与其底面相交的截面是一个由两条母线和底面圆的弦组成的等腰三角形。

(3)圆锥的母线l,高h和底面圆的半径组成一个直径三角形,圆锥的有关计算问题,一般都要归结为解这个直角三角形,特别是关系式l2=h2+R2。


圆锥体的体积?

圆锥体的体积:V=(1/3)π(r²)h

公式说明:

π为圆周率,约等于3.14,r为底面圆的半径,h为圆锥的高

设圆椎的底面半径r为2cm,高7cm,则圆锥体积V=(1/3)π(r²)h=(1/3)x3.14x2²x7≈29.31cm³


圆锥体积公式是什么

圆锥的体积公式是:V=1/3Sh或V=1/3πr²h,其中S是底面积,h是高,r是底面半径。

圆锥体积公式

圆锥的体积公式V=1/3Sh或V=1/3πr²h,其中S是底面积,h是高,r是底面半径。

圆锥是一种几何图形,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。

立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。

圆锥公式大全

圆锥的体积
一个圆锥所占空间的大小,叫做这个圆锥的体积.
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3.
根据圆柱体积公式V=Sh(V=πr^2h),得出圆锥体积公式:
V=1/3Sh(V=1/3πr^2h)
S是底面积,h是高,r是底面半径.
圆锥的表面积
一个圆锥表面的面积叫做这个圆锥的表面积.
圆锥的计算公式
圆锥的侧面积=高的平方*3.14*百分之扇形的度数
圆锥的表面积=底面积+侧面积
圆锥的体积=1/3*底面积*高 S锥侧=H的平方*3.14*百分之扇形的度数
S锥表=S侧+S底 V锥=1/3SH


圆锥的体积怎么求?

圆锥体体积=底×高÷3
长方形的周长=(长+宽)×2
正方形的周长=边长×4
长方形的面积=长×宽
正方形的面积=边长×边长
三角形的面积=底×高÷2
平行四边形的面积=底×高
梯形的面积=(上底+下底)×高÷2
直径=半径×2 半径=直径÷2
圆的周长=圆周率×直径=
圆周率×半径×2
圆的面积=圆周率×半径×半径
长方体的表面积=
(长×宽+长×高+宽×高)×2
长方体的体积 =长×宽×高
正方体的表面积=棱长×棱长×6
正方体的体积=棱长×棱长×棱长
圆柱的侧面积=底面圆的周长×高
圆柱的表面积=上下底面面积+侧面积
圆柱的体积=底面积×高
圆锥的体积=底面积×高÷3
长方体(正方体、圆柱体)
的体积=底面积×高
平面图形
名称 符号 周长C和面积S
正方形 a—边长 C=4a
S=a2
长方形 a和b-边长 C=2(a+b)
S=ab
三角形 a,b,c-三边长
h-a边上的高
s-周长的一半
A,B,C-内角
其中s=(a+b+c)/2 S=ah/2
=ab/2·sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)

四边形 d,D-对角线长
α-对角线夹角 S=dD/2·sinα
平行四边形 a,b-边长
h-a边的高
α-两边夹角 S=ah
=absinα
菱形 a-边长
α-夹角
D-长对角线长
d-短对角线长 S=Dd/2
=a2sinα
梯形 a和b-上、下底长
h-高
m-中位线长 S=(a+b)h/2
=mh
圆 r-半径
d-直径 C=πd=2πr
S=πr2
=πd2/4
扇形 r—扇形半径
a—圆心角度数
C=2r+2πr×(a/360)
S=πr2×(a/360)
弓形 l-弧长
b-弦长
h-矢高
r-半径
α-圆心角的度数 S=r2/2·(πα/180-sinα)
=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
=παr2/360 - b/2·[r2-(b/2)2]1/2
=r(l-b)/2 + bh/2
≈2bh/3
圆环 R-外圆半径
r-内圆半径
D-外圆直径
d-内圆直径 S=π(R2-r2)
=π(D2-d2)/4
椭圆 D-长轴
d-短轴 S=πDd/4
立方图形
名称 符号 面积S和体积V
正方体 a-边长 S=6a2
V=a3
长方体 a-长
b-宽
c-高 S=2(ab+ac+bc)
V=abc
棱柱 S-底面积
h-高 V=Sh
棱锥 S-底面积
h-高 V=Sh/3
棱台 S1和S2-上、下底面积
h-高 V=h[S1+S2+(S1S1)1/2]/3
拟柱体 S1-上底面积
S2-下底面积
S0-中截面积
h-高 V=h(S1+S2+4S0)/6
圆柱 r-底半径
h-高
C—底面周长
S底—底面积
S侧—侧面积
S表—表面积 C=2πr
S底=πr2
S侧=Ch
S表=Ch+2S底
V=S底h
=πr2h

空心圆柱 R-外圆半径
r-内圆半径
h-高 V=πh(R2-r2)
直圆锥 r-底半径
h-高 V=πr2h/3
圆台 r-上底半径
R-下底半径
h-高 V=πh(R2+Rr+r2)/3
球 r-半径
d-直径 V=4/3πr3=πd2/6
球缺 h-球缺高
r-球半径
a-球缺底半径 V=πh(3a2+h2)/6
=πh2(3r-h)/3
a2=h(2r-h)
球台 r1和r2-球台上、下底半径
h-高 V=πh[3(r12+r22)+h2]/6
圆环体 R-环体半径
D-环体直径
r-环体截面半径
d-环体截面直径 V=2π2Rr2
=π2Dd2/4
桶状体 D-桶腹直径
d-桶底直径
h-桶高 V=πh(2D2+d2)/12
(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15
(母线是抛物线形)

圆锥体的体积公式是什么?

圆锥体的体积公式是V=1/3sh, 其中s为圆锥底面面积,h为圆锥的高。

一个圆锥体所占空间的大小,叫作这个圆锥体的体积。一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。根据圆柱体积公式V=Sh,得出圆锥体积公式V=1/3sh。 其中S是圆柱的底面积,h是圆柱的高。

圆锥的具体构成:

圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫作圆锥的高;圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。

圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长。

圆锥的侧面积就是弧长为圆锥底面的周长X母线/2;没展开时是一个曲面。圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。


本文发布于:2023-02-28 19:11:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/167760266054023.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:圆锥的体积(圆锥的体积公式推导过程).doc

本文 PDF 下载地址:圆锥的体积(圆锥的体积公式推导过程).pdf

标签:圆锥   体积   公式   过程
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|