中值定理(中值定理有什么作用)

更新时间:2023-03-01 00:40:04 阅读: 评论:0

中值定理有哪些啊?

中值定理通常包括罗尔定理、拉格朗日中值定理、柯西中值定理,他们不但是研究函数形态的基础,同时也是洛必达法则及泰勒公式的理论基础。

中值定理是反映函数与导数之间联系的重要定理,也是微积分学的理论基础,在许多方面它都有重要的作用,在进行一些公式推导与定理证明中都有很多应用。

在中值定理中,中值指的是,定理的结论里面一定与所讨论区间[a,b]的某一个值有关,这个值统称为中值,是区间[a,b]其中的一个值。

中值定理的前世今生

人们对微分中值定理的认识可以上溯到公元前古希腊时代,古希腊数学家在几何研究中,得到如下结论,过抛物线弓形的顶点的切线必平行于抛物线弓形的底,这正是拉格朗日定理的特殊情况。希腊著名数学家阿基米德正是巧妙地利用这一结论,求出抛物弓形的面积。

意大利卡瓦列里在《不可分量几何学》的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实,曲线段上必有一点的切线平行于曲线的弦。这是几何形式的微分中值定理,被人们称为卡瓦列里定理。


三个中值定理的公式是什么?

三个中值定理的公式:

罗尔定理:如果函数f(x)满足在闭区间[a,b]上连续;在开区间(a,b)内可导;在区间端点处的函数值相等,即f(a)=f(b),那么在(a,b)内至少有一点ξ(a<ξ<b),使得f'(ξ)=0。

柯西定理:如果函数f(x)及F(x)满足在闭区间[a,b]上连续;在开区间(a,b)内可导;(3)对任一x∈(a,b),F'(x)≠0那么在(a,b)内至少有一点ξ,使等式[f(b)-f(a)]/=f'(ξ)/F'(ξ)成立。

拉格朗日定理:如果函数f(x)满足在闭区间[a,b]上连续;在开区间(a,b)内可导。那么在(a,b)内至少有一点ξ(a<ξ<b),使等式f(b)-f(a)=f′(ξ)(b-a)成立。

积分中值定理:

积分中值定理,是一种数学定律。分为积分第一中值定理和积分第二中值定理,它们各包含两个公式。其中,积分第二中值定理还包含三个常用的推论。这个定理的几何意义为:若f(x)≥0,x∈[a,b],则由x轴、x=a、x=b及曲线y=f(x)围成的曲边梯形的面积等于一个长为b-a,宽为f(ξ)的矩形的面积。


中值定理公式

微分中值定理是一系列中值定理总称,是研究函数的有力工具,其中最重要的内容是拉格朗日定理,可以说其他中值定理都是拉格朗日中值定理的特殊情况或推广。
微分中值定理反映了导数的局部性与函数的整体性之间的关系,应用十分广泛。
罗尔定理:内容:如果函数f(x)满足:在闭区间[a,b]上连续;在开区间(a,b)内可导;
在区间端点处的函数值相等,即f(a)=f(b),那么在(a,b)内至少有一点ξ(a<ξ<b),使得f'(ξ)=0.
几何上,罗尔定理的条件表示,曲线弧(方程为)是一条连续的曲线弧,除端点外处处有不垂直于x轴的切线,且两端点的纵坐标相等。
而定理结论表明:弧上至少有一点,曲线在该点切线是水平的。

三个中值定理的内容是什么?

三个中值定理分别是拉格朗日中值定理、柯西中值定理、积分中值定理。

拉格朗日中值定理:一段连续光滑曲线中必然有一点,它的斜率与整段曲线平均斜率相同。柯西中值定理粗略地表明,对于两个端点之间的给定平面弧,至少有一个点,使曲线在该点的切线平行于两端点所在的弦。

柯西中值定理:其几何意义为,用参数方程表示的曲线上至少有一点,它的切线平行于两端点所在的弦。该定理可以视作在参数方程下拉格朗日中值定理的表达形式。

积分中值定理:这个定理的几何意义为若f(x)≥0,x∈[a,b],则由x轴、x=a、x=b及曲线y=f(x)围成的曲边梯形的面积等于一个长为b-a,宽为f(ξ)的矩形的面积。

以下是中值定理应用的相关介绍:

在一些等式的证明中,我们往往容易思维定式,只是对于原来的式子要从哪去证明,很不容易去联系其它,只从式子本身所表达的意思去证明。

无穷小(大)量阶的比较时,看到两个无穷小(大)量之比的极限可能存在,也可能不存在。如果存在,其极限值也不尽相同。称两个无穷小量或两个无穷大量之比的极限为 型或 型不定式极限。

解决这种极限的问题通常要用到洛比达法则。这是法则的内容,而在计算时往往都是直接的应用结论,没有注意到定理本身的证明,而这个定理的证明也应用到了中值定理。

以上资料参考百度百科——中值定理


本文发布于:2023-02-28 19:11:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/167760240453901.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:中值定理(中值定理有什么作用).doc

本文 PDF 下载地址:中值定理(中值定理有什么作用).pdf

标签:中值   定理   有什么   作用
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|