正交矩阵(正交矩阵的特征值一定是1或

更新时间:2023-03-01 00:37:26 阅读: 评论:0

什么叫正交矩阵

正交矩阵是方块矩阵,行向量和列向量皆为正交的单位向量。

行向量皆为正交的单位向量,任意两行正交就是两行点乘结果为0,而因为是单位向量,所以任意行点乘自己结果为1。

对于3x3正交矩阵,每行是一个3维向量,两个3维向量正交的几何意义就是这两个向量相互垂直。

所以3x3正交矩阵的三行可以理解为一个3D坐标系里的三个坐标轴,下面是3*3正交矩阵M,

x1,x2,x3,//x轴y1,y2,y3,//y轴z1,z2,z3,//z轴

单位矩阵表示的三个坐标轴就是笛卡尔坐标系里的x,y,z轴:

1,0,0,//x轴0,1,0,//y轴0,0,1,//z轴

一个向量乘以3x3正交矩阵的几何意义就是把这个向量从当前坐标系变换到这个矩阵所表示的坐标系里,比如下面的矩阵M1,

0,1,0,1,0,0,0,0,1,

一个向量(1,2,3)右乘这个矩阵M1得到新的向量(2,1,3),就是把原向量从原坐标系变换到一个新的坐标系。

新坐标系的x轴在原坐标系里是(0,1,0),即落在原坐标系的y轴上,

新坐标系就是把原坐标系的x和y轴对调,所以这个正交矩阵M1作用于向量(1,2,3)后把向量的x和y分量对调了。

正交矩阵的定义“行向量和列向量皆为正交的单位向量”带来了另一个好处:正交矩阵的转置就是正交矩阵的逆,比普通矩阵求逆矩阵简单多了。

下面解释一下为什么正交矩阵的转置就是正交矩阵的逆:

还是开头说的正交矩阵M:

x1,x2,x3,//rowxy1,y2,y3,//rowyz1,z2,z3,//rowz

每行都是单位长度向量,所以每行点乘自己的结果为1。

任意两行正交就是两行点乘结果为0。

矩阵M的转置矩阵MT是:

x1,y1,z1,x2,y2,z2,x3,y3,z3,

两个矩阵相乘Mmul=M*MT:

rowx*rowx,rowx*rowy,rowx*rowz,rowy*rowx,rowy*rowy,rowy*rowz,rowz*rowx,rowz*rowy,rowz*rowz,

点乘自己结果为1,点乘别的行结果为0,所以Mmul等于单位矩阵

1,0,0,0,1,0,0,0,1,

逆矩阵的定义就是逆矩阵乘以原矩阵等于单位矩阵,所以,

正交矩阵的转置就是正交矩阵的逆。

扩展资料

正交矩阵定义:

如果:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”.)或A′A=E,则n阶实矩阵A称为正交矩阵,若A为单位正交阵,则满足以下条件:1)A是正交矩阵。

判断是正交矩阵的方法:

一般就是用定义来验证,若AA' = I,则A为正交矩阵,也就是验证每一行(或列)向量的模是否为1
任意两行(或列)的内积是否为0。


什么是正交矩阵

如果:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”。)或A′A=E,则n阶实矩阵A称为正交矩阵

例如:

1 0 1 0

矩阵A: 0 1 A的转置: 0 1 此时 AA'=E

故A本身是正交矩阵

由于AA'=E 由逆矩阵定义 若AB=E 则B为A的逆矩阵 可以知道 A'为A的逆矩阵

也就是说正交矩阵本身必然是可逆矩阵

若A是正交矩阵则A的n个行(列)向量是n维向量空间的一组标准正交基【即线性不相关】

扩展资料

在矩阵论中,正交矩阵(orthogonal matrix)是一个方块矩阵Q,其元素为实数,而且行与列皆为正交的单位向量,使得该矩阵的转置矩阵为其逆矩阵。

作为一个线性映射(变换矩阵),正交矩阵保持距离不变,所以它是一个保距映射,具体例子为旋转与镜射。

行列式值为+1的正交矩阵,称为特殊正交矩阵,它是一个旋转矩阵。

行列式值为-1的正交矩阵,称为瑕旋转矩阵。瑕旋转是旋转加上镜射。镜射也是一种瑕旋转。

参考资料:百度百科-正交矩阵


什么是正交矩阵

什么是正交矩阵如下

定义

编辑播报

如果:AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”。)或ATA=E,则n阶实矩阵A称为正交矩阵,若A为正交阵,则满足以下条件[2][3]:

1)AT是正交矩阵

2)(E为单位矩阵)

3)AT的各行是单位向量且两两正交

4)AT的各列是单位向量且两两正交

5)(Ax,Ay)=(x,y)x,y∈R

6)|A|=1或-1

7)

8)正交矩阵通常用字母Q表示。

(9)举例:

若A=[r11r12r13;r21r22r23;r31r32r33],则有:

定理

在矩阵论中,实数正交矩阵是方块矩阵Q,它的转置矩阵是它的逆矩阵,如果正交矩阵的行列式为+1,则称之为特殊正交矩阵。

1.方阵A正交的充要条件是A的行(列)向量组是单位正交向量组;

2.方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基;

3.A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量;

4.A的列向量组也是正交单位向量组。

5.正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵


何谓正交矩阵?它有哪些性质?

定义
1
  n阶实矩阵
a称为正交矩阵,如果:a×a′=e(e为单位矩阵,a'表示“矩阵a的转置矩阵”。)
若a为正交阵,则下列诸条件是等价的:
  1)
a
是正交矩阵
  2)
a×a′=e(e为单位矩阵)
  3)
a′是正交矩阵
  4)
a的各行是单位向量且两两正交
  5)
a的各列是单位向量且两两正交
  6)
(ax,ay)=(x,y)
x,y∈r
  
正交矩阵通常用字母q表示。
  举例:a=[r11
r12
r13;r21
r22
r23;r31
r32
r33]
  则有:r11^2+r12^2+r13^2=r21^2+r22^2+r23^2=r31^2+r32^2+r33^2=1
  r11*r12+r21*r22+r31*r32=0等性质
  正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵。

正交矩阵

什么是正交矩阵

满足公式 的矩阵就是正交矩阵,那么正交矩阵有什么特性呢?

将A表示由行向量组成的矩阵 ,则

根据公式,可知

,因此 是单位向量
,因此 与 正交

结论:正交矩阵 中的行(列)向量是两两正交的单位向量。

本文发布于:2023-02-28 19:11:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/167760224653827.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:正交矩阵(正交矩阵的特征值一定是1或.doc

本文 PDF 下载地址:正交矩阵(正交矩阵的特征值一定是1或.pdf

标签:正交   矩阵   特征值   一定是
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|