一分钟速算法,多一点方法.
一分钟速算法口诀
第1节 个位数比十位数大1乘以9的运算
方法:前面因数的个位数是几,就把第几个手指弯回来,弯指左边有几个手指,则表示乘积的百位数是几.弯指读0,则表示乘积的十位数是0,弯指右边有几个手指,则表示乘积的个位数是几.
口诀:个位是几弯回几,弯指左边是百位,弯指读0为十位,弯指右边是个位.
例:34×9=306
第2节 个位数比十位数大任意数乘以9的运算
方法:凡是个位数比十位数大任意数乘以9时,仍是前面因数的个位数是几,将第几个手指弯回来,弯回来的手指不读数,作为乘积的十位数与个位数的分界线.前面因数的十位数是几,从左边起数过几个手指,则表示乘积的百位数就是几,弯指左边减去百位数,还剩几个手指,则表示乘积的十位数是几,弯指的右边有几个手指,则表示乘积的个位数是几.
口诀:个位是几弯回几,原十位数为百位.左边减去百位数,剩余手指为十位.弯指作为分界线,弯指右边是个位.
例:13×9=117
第3节 个位数和十位数相同乘以9
方法:凡是个位数和十位数相同乘以9时,它的个位数是几则将第几个手指弯回来.弯指左边有几个手指则表示乘积的百位数是几.弯回来的手指读9,作为乘积的十位数.弯指右边有几个手指,则表示乘积的个位数是几.
口诀:个位是几就弯几,弯指左边是百位.弯指读9是十位,弯指右边是个位.
例:88×9=792
第4节 个位数比十位数小乘积9的运算
方法:计算时只要将前面因数的十位数减1写在百位上,前面因数的个位数是几,写在乘积的十位上,前面因数于与100的差数,写在乘积的个位即可.
如果是80几乘以9,因80几与100差10几,则在乘积的十位数上加1.如果是70几乘以9,因70几与100差20几,则应在乘积的十位上加2.其他依次类推.
口诀:十位减1写百位,原个位数写十位.与百差几写个位,如差几十加十位.
例:94×9=846 62×9=558
第二章 加法第1节 加大减差法
方法:在一个加式里,如果被加数或加数有一个接近整十、整百、整千等,都以整数来加,然后再减去这个差数(即补数),这样计算起来十分方便.
口诀:用第一个加数加上第二个加数的整十、整百、整千……再减去第二个加数与整十、整百、整千……的差,等于和.
第2节 求只是两个数字位置变换两位数的和
方法:在一个两位数的加式里,如果被加数的十位数和加数的个位数相同,而被加数的个位数又和加数的十位数相同,就将被加数的十位数和个位数相加之和再乘以11,即为这个加式的和.
口诀:(首+尾)×11=和
例:58+85=(5+8)×11=143
第3节 一目三行加法
方法:若三行数在一起相加,未加之前先虚进1,把第一位和末尾第二位之间的数看作中间数,凑9弃掉,剩几写几,末尾一位数凑10弃掉,剩几写几,即为所求三行之和.
口诀:提前虚进1,中间弃9,末尾弃10.
注意三个重点:
相加不够9的用分段法:直接相加,并要提前虚进1;
中间数相加大于19的(弃19),前面多进1;
末位数相加大于20的(弃20),前边多进1.
第三章 减法第1节 减大加差法
方法:在一个减式里,如果被减数的后几位数值较小,而减数的后几位数值较大,往往要向前借好几位时,则应将减数中加上一个数(即补数)变成整数,从被减数中减去,然后再加上这个补数,即得最终差数.
口诀:用被减数减去减数的整十、整百、整千……再加上减数与整十、整百、整千……的差,等于差.
第2节 求只是数字位置颠倒两个两位数的差
方法:在一个两位数的减式里,如果被减数的十位数值与减数的个位数值相同,而被减数的个位数值又与减数的十位数值相同时,用被减数的十位数值,减去被减数的个位数值,再乘以9等于差.
口诀:用被减数的十位数减去它的个位数,再乘以9,等于差.
例:74-47=(7-4)×9=27
第3节 求只是首尾换位,中间数相同的两个三位数的差
方法:被减数的百位数减去个位数的差乘以9,分别将乘积的十位数值作为百位数,将乘积的个位数值仍作为个位数,两数中间写上一个9(即十位),便是这个减式的差.
口诀:用被减数的百位数减去它的个位数,再乘以9,得到一个两位数,再在这个数中间写上9,就等于这两个数的差.
例:936-639=(9-6)×9=3×9=27=2(9)7
第4节 求两个互补数的差
如何求一个数的补数?从十位数起向左边,无论有多少位数,都给它凑成9,个位数(即末尾一个数)凑成10即可,这就是它的补数.
互补的概念:两数相加(和)等于整10、整100、整1000……叫互补.
求补数的方法:前凑9,后凑10.
口诀:两位互补的数相减:减50后,再乘以2等于差;
三位互补的数相减:减500后,再乘以2等于差;
四位互补的数相减:减5000后,再乘以2等于差;
……依此类推.
第四章 乘法第1节 十位数相同,个位数互补的乘法运算
方法:在一个两位数的乘式里,凡是十位数相同,个位数互补时,在前面因数的十位数上加上一个1,再和另一个因数的十位数相乘,所得的积写在乘积的前两位.然后个位和个位相乘的积,写在后两位,即为乘式的最终积.
口诀:前面数十位加个1,和另一个数十位乘得积,后写两个个位积,即为所求最终积.
例:67×63=6×(6+1)……7×3=42……21=4221
第2节 十位数互补,个位数相同的乘法运算
方法:在一个两位数的乘式里,如果前面因数和后面因数的十位数互补,它们的个位数相同时计算方法:首先十位数与十位数相乘的积再加上个位数写前边,后写它们两个数个位相乘之积,即为所求最终积.
口诀:十位相乘加个位,个位相乘写后边.十位数没有要添个0(例2).
例1:76×36=(7×3+6)……6×6=27……36+2736
例2:83×23=(8×2+3)……3×3=19……(0)9=1909
第3节 一个数十位与个位互补,另一个数相同的乘法运算
方法:在互补的十位数上加个1,和另一数十位乘得积,后面写上两个数个位相乘的积,即为所求的最终积.
注意:
(1)补数在上面还是在下面,必须在互补数十位加个1,上下相乘,即可.
(2)对于多位数都相同的数,中间有几个数(除首尾两个),直接写在积得中间即可.
口诀:互补数十位加个1,和另一数十位乘得积,后续两个个位积,即为所求最终积.
第4节 11的乘法运算
方法:凡任何一个数乘以11时,最高位是几,就向前位进几.最高位数和第二位数相加写在第二位,第二位数和第三位数相加写在第三位.相加超10前面加1,个位是几还写几,依此类推,就是11的乘积.
口诀:高位是几则进几,两两相加挨次写.相加超十前加1,个位是几还是几.
例1:76×11=836
例2:86×11=946
第5节 十位数是1的乘法运算
方法:在一个两位数的乘式里,如果两个数十位都是1,个位是任意数,可将个位与个位相乘,得数写后面;个位与个位相加之和写中间;十位与十位相乘得积,写前边(有进位的加进位),即为这个乘式之积.
口诀:个位相乘写个位,个位相加写十位,有进位的加进位.十位相乘写百位,有进位的加进位.
例:18×16=288
第6节 个位数是1的乘法运算
方法:在一个两位数的乘式里,如果两个数的个位数都是1,而且十位数是任意数时,可按三步计算:(1)将个位数相乘写个位,(2)十位数相加写十位,(3)十位数相乘写百位(有进位的加进位).即为乘式的最终积.
口诀:个位相乘写个位,十位相加写十位,十位相乘写高位(有进位的加进位).
例:91×81=7371
第7节 特殊数的乘法运算
方法:在一个乘式里,前面的因数缩小几倍,后面的因数就扩大几倍,其积不变.
口诀:任何数乘以15、35或45,就把这个任何数缩小2倍,再把15、35或45扩大2倍,其积不变.
任何数乘以25,就把这个任何数缩小4倍,再把25扩大4倍,其积不变.
任何数乘以125,就把这个任何数缩小8倍,再把125扩大8倍,其积不变.
例:78×45=(78÷2)×(45×2)=39×90=3510
第8节 任意两位数乘以两位数的万能法
方法:任意两位数乘以两位数可分三步完成
(1)首先个位数上下相乘
(2)个位数和十位数交叉相乘相加(有进位的加进位)
(3)十位数上下相乘(有进位的加进位)
口诀:个位数上下相乘;个位数和十位数交叉相乘积相加(有进位的加进位);十位数上下相乘(有进位的加进位).
例:78×45
第9节 任意三位数乘以两位数的万能法
方法:(1)个位数上下相乘
(2)个位数和十位数交叉相乘积相加(有进位的加进位)
(3)后面因数的个位数和前面因数的百位数交叉相乘再加上十位数上下相乘(有进位的加进位)
(4)后面因数的十位数和前面因数的百位数交叉相乘(有进位的加进位).
口诀:个位数上下相乘;
个位数和十位数交叉相乘积相加(有进位的加进位);
个位数和百位数交叉相乘再加上十位数上下相乘(有进位的加进位);
十位数和百位数交叉相乘(有进位的加进位).
第10节 任意三位数乘以三位数的万能法
方法和口诀相同:
(1)个位数上下相乘;
(2)个位数和十位数交叉相乘积相加(有进位的加进位);
(3)个位数和百位数交叉相乘加上十位数上下相乘(有进位的加进位);
(4)十位数和百位数交叉相乘积相加(有进位的加进位);
(5)百位数上下相乘(有进位的加进位).
第11节 数值越大越好算
999的平方
方法:只要是同位数9自乘,无论是多少位,只将9的位数减1位剩几个9写几个9,后面写一个8,前面有几个9,后面就写几个0,末位只写一个1,即为乘式最终积.如三个9自乘时,需写两个9,一个8,两个0,一个1.而六位9自乘时,需写五个9,一个8,五个0,一个1.
口诀:先求两数各补数;交叉相减减补数(减一次)写前边;补数相乘写后边.
第12节 数值小了也好算
口诀:百位数乘以百位数写高位;
百位数和个位数相乘的积,扩大两倍写中间;
个位数乘个位写后面;
大于100要进位.
第五章 一位数乘任意多位数第1节 2的乘法运算
方法:凡2乘以5以下的数字,应直接写出它的倍数来,遇到大于4的数字如5、6、7、8、9等,都要在前一位上加一个1.在算前一位(即高位)时,必须要看后位(即低位)是否大于5,决定有无进位,大者在前位上加1.
因为2×5=10(个位数是0) 2×6=12(个位数是2) 2×7=14(个位数是4)
2×8=16(个位数是6) 2×9=18(个位数是8)
口诀:1、2、3、4只写倍,后数大5或等于5前加1.5个为0、6个为2、7个为4、8个为6、9个为8要记牢,算前看后莫忘掉.
第2节 3的乘法运算
方法:3的进位律是3的循环小数,无论3后面有几个3,但最后只要出现4或比4大的数,则前边就要进1,无论3循环到几个位数,最后是比3小的数字,都按不进位计算.
67也是一样,大于6的循环小数就进2,即6以后无论循环几位,只要后位有7或比7大的数就进2,6的循环小数是6或小于6以下都按不进2计算,但不进2必能进1.
数字上点圆点的,表示该数是循环小数,而后位数则表示无论前数循环几位,而见到后数即按大者计算,无论循环到几位不见后数,都按小于此数计算.
口诀:1、2、3数直写倍,后大34前加1,大于67要进2,循环小数要记准:4个为2;5个为5;6个为8;7个为1;8个为4;9个为7.算前看后莫忘记.
(3的乘法运算) (4的乘法运算)
第3节 4的乘法运算
方法:凡是用4乘1和2时,应直接写出它的倍数.4的进位律是大25进1,大50进2,大75进3.但必须记住:任何偶数乘以4时,其本个位都是它的补数.如见4是6;见6是4;见2是8;见8是2.而任何奇数乘以4时,其本个位都是它的凑数.如:1+4=5;3+2=5;5+0=5;7+8=15(个位是5);9+6=15(个位是5).
口诀:1数2数直写倍,后大25前加1,大于5数要进2,后大75将3进,偶数个位皆互补,奇数个位凑5齐.
第4节 5的乘法运算
方法:根据乘法的性质原理:前面因数缩小几倍,后面因数扩大几倍,其积不变.凡是任何数乘以5时,先将前面因数缩小两倍,再乘后面因数5,扩大两倍变成10计算起来,就更简便了.
口诀:任何数乘以5,等于它的半数加零.
例:368×5=(368÷2)×(5×2)=184×10=1840
第5节 6的乘法运算
方法:因为6是3的两倍,那么3的进位律是大34进1,大67进2.而6的进位律却是大34进2,大67进4.
口诀:167数要进1;后大34将2进;大5一定要进3;后大67将4进;834数要进5;循环小数要记准.
(6的乘法运算) (7的乘法运算)
第6节 7的乘法运算
方法:7的进律较难记,必须从中找窍门.7的进位律是:
大于进1;大于进2;
大于进3;大于进5;大于进6.
口诀:1428续57.进2、14搬后位.进3,将头按在尾.进4,57移前位.进5,将尾接在首.进6,分半前后移.偶数本个皆2倍,1-7;3-1;5本身;7-9;9-3要记牢,两位三位先相比.
第7节 8的乘法运算
方法:4的两倍,那么4的进位律是大25进1;大50进2;大75进3;而8的进位律是大25进2;大5进4;大75进6.本身加5本个同的意思是:个位数相同.如:
1+5=6(1和6个位相同是8) 2+5=7(2和7个位相同是6)
3+5=8(3和8个位相同是4) 4+5=9(4和9个位相同是2) 5+5=10(5的个位是0)
口诀:125数要进1,后大25将2进.375数要进3,后数大5将4进.625数应进5,后大75将6进.875数要进7,本身加5本个同.1、6个8;2、7-6;3、8个4;4、9-2.
第8节 9的乘法运算
方法:9乘任何数时,要看两位数,才能决定是进几,前位数值小于后位数值时,前位的数值是几则进几(照数进).如果前位数值大于后位数时,无论是大几,在前位上只减一个1,余数即是应进的数,即称为前大于后要减1.
口诀:前小于后照数进,前大于后要减1.各数本个皆互补,算到末尾必减1.
附
乘法口诀速算方法:
两位数相乘,在十位数相同、个位数相加等于10的情况下,如62×68=4216
计算方法:6×(6+1)=42(前积),2×8=16(后积).
一分钟速算口诀中对特殊题的定理是:
任意两位数乘以任意两位数,只要魏式系数为“0”所得的积,一定是两项数中的尾乘尾所得的积为后积,头乘头(其中一项头加1的和)的积为前积,两积相邻所得的积.
如(1)33×46=1518(个位数相加小于10,所以十位数小的数字3不变,十位大的数4必须加1)
计算方法:3×(4+1)=15(前积),3×6=18(后积)
两积组成1518
如(2)84×43=3612(个位数相加小于10,十位数小的数4不变 十位大的数8加1)
计算方法:4×(8+1)=36(前积),3×4=12(后积)
两积相邻组成:3612
如(3)48×26=1248
计算方法:4×(2+1)=12(前积),6×8=48(后积)
两积组成:1248
如(4)245平方=
计算方法24×(24+1)=600(前积),5×5=25
两积组成:
ab×cd 魏式系数=(a-c)×d+(b+d-10)×c
“头乘头,尾乘尾,合零为整,补余数.”
1.先求出魏式系数
2.头乘头(其中一项加一)为前积 (适应尾相加为10的数)
3.尾乘尾为后积.
4.两积相连,在十位数上加上魏式系数即可 .
如:76×75,87×84吧,凡是十位数相同个位数相加为11的数,它的魏式系数一定是它的十位数的数 .
如:76×75魏式系数就是7,87×84魏式系数就是8.
如:78×63,59×42,它们的系数一定是十位数大的数减去它的个位数.
例如第一题魏式系数等于7-8=-1,第2题魏式系数等于5-9=-4,只要十位数差一,个位数相加为11的数一律可以采用以上方法速算.
例题1 76×75, 计算方法: (7+1)×7=56 5×6=30 两积组成5630,然后十位数上加上7最后的积为5700.
例题2 78×63,计算方法:7×(6+1)=49,3×8=24,两积组成4924,然后在十位数上2减去1,最后的积为4914
实例:
-如(1)33×46=1518(个位数相加小于10,所以十位数小的数字3不变,十位大的数4必须加1)-
-计算方法:3×(4+1)=15(前积),3×6=18(后积)-
-两积组成1518-
-如(2)84×43=3612(个位数相加小于10,十位数小的数4不变 十位大的数8加1)-
-计算方法:4×(8+1)=36(前积),3×4=12(后积)-
-两积相邻组成:3612-
-如(3)48×26=1248-
-计算方法:4×(2+1)=12(前积),6×8=48(后积)-
-两积组成:1248-
-如(4)245平方=-
-计算方法24×(24+1)=600(前积),5×5=25-
-两积组成:-
(一)十几与十几相乘
十几乘十几,
方法最容易,
保留十位加个位,
添零再加个位积.
证明:设m、n 为1 至9 的任意整数,则
(10+m)(10+n)
=100+10m+10n+mn
=10〔10+(m+n)〕+mn.
例:17×l6
∵10+ (7+6)=23(第三句),
∴230+7×6=230+42=272(第四句),
∴17×16=272.
(二)十位数字相同、个位数字互补(和为10)的两位数相乘
十位同,个位补,
两数相乘要记住:
十位加一乘十位,
个位之积紧相随.
证明:设m、n 为1 到9 的任意整数,则
(10m+n)〔10m+(10-n)〕
=100m(m+1)+n(10-n).
例:34×36
∵(3+1)×3=4×3=12(第三句),
个位之积4×6=24,
∴34×36=1224. (第四句)
注意:两个数之积小于10 时,十位数字应写零.
(三)用11 去乘其它任意两位数
两位数乘十一,
此数两边去,
中间留个空,
用和补进去.
证明:设m、n 为1 至9 的任意整数,则
(10m+n)×(10+1)=100m+10(m+n)+n.
例:36×ll
∵306+90=396,
∴36×11=396.
注意:当两位数字之和大于10 时,要进到百位上,那么百位数数字就成为m+1,
如:
84×11
∵804+12×10=804+120=924,
∴84×11=924.
一分钟速算法口诀-一分钟速算法口诀
一分钟速算口诀中对特殊题的定理是:任意两位数乘以任意两位数,只要魏式系数为“0”所得的积,一定是两项数中的尾乘尾所得的积为后积,头乘头(其中一项头加1的和)的积为前积,两积相邻所得的积。
如(1)33×46=1518(个位数相加小于10,所以十位数小的数字3不变,十位大的数4必须加1)
计算方法:3×(4+1)=15(前积),3×6=18(后积)
两积组成1518
如(2)84×43=3612(个位数相加小于10,十位数小的数4不变
十位大的数8加1)
计算方法:4×(8+1)=36(前积),3×4=12(后积)
两积相邻组成:3612
如(3)48×26=1248
计算方法:4×(2+1)=12(前积),6×8=48(后积)
两积组成:1248
如(4)245平方=60025
计算方法24×(24+1)=600(前积),5×5=25
两积组成:60025
ab×cd
魏式系数=(a-c)×d+(b+d-10)×c
“头乘头,尾乘尾,合零为整,补余数。”
1.先求出魏式系数
2.头乘头(其中一项加一)为前积
(适应尾相加为10的数)
3.尾乘尾为后积。
4.两积相连,在十位数上加上魏式系数即可
。
如:76×75,87×84吧,凡是十位数相同个位数相加为11的数,它的魏式系数一定是它的十位数的数
。
如:76×75魏式系数就是7,87×84魏式系数就是8。
如:78×63,59×42,它们的系数一定是十位数大的数减去它的个位数。
例如第一题魏式系数等于7-8=-1,第2题魏式系数等于5-9=-4,只要十位数差一,个位数相加为11的数一律可以采用以上方法速算。
例题1
76×75,
计算方法:
(7+1)×7=56
5×6=30
两积组成5630,然后十位数上加上7最后的积为5700。
例题2
78×63,计算方法:7×(6+1)=49,3×8=24,两积组成4924,然后在十位数上2减去1,最后的积为4914。
一分钟速算秘诀
6vcd送书籍教材 现在的父母都为了小孩学习问题而苦恼,特别是数学对小孩来说基本上都是一个大难题,以前我们读小学的时候,用棍子一根一根的数,每次上学的时候,书包都是装满了小棍棍,现在的小孩就不用我们这么麻烦了,有了一分钟速算,让你轻而易举的就能攻破算术这个难关. 手指速算法 现在的小孩的算术让我大吃一惊,他们用的手指速算法,又快又准,看他们二十以内的加减用手指算起来简单又准确,用手指速算法竟然还可以算一百以内的加减速,真的不可思议,现在的教学方法越来越多,难道小孩也越来越聪明。现在的老师可真够用心的。如果你正为你孩子的算术苦恼,建议你也使用一下一分钟速算法。 《小速算家—一分钟速算》是速算大师周根项老师三十多年潜心研究的成果。他用独创的“手指法”、“转换法”、“万能法”等简单、易学、实用的趣味运算方式,帮助孩子彻底学习没兴趣、做题速度慢、计算总出错、考试总丢分等学习问题。《小速算家—一分钟速算》通过手、心、脑联合并激发孩子超常思维能力:以口诀、动画、授课视频等多种信息刺激为手段,提高孩子思维的逻辑性、行为的条理性及灵敏性能最终达到开发孩子智力,增加学习兴趣、提升解题能力,提高学习成绩的目的。 《小速算家—一分钟速算》包含由速算大师亲自讲解的数十种加、减、乘、除的趣味运算方法。配以生动有趣的动画,易于孩子理解所学内容;朗朗上口的运算口诀,适合孩子学习特点,便于孩子记忆;精心设计的学习手册以及练习册,孩子和家长可能一起检验学习效果,随时体验成功的喜悦! 作者介绍: 周根项:著名速算大师,《一分钟速算》发明人. 数十年潜心研究数字运算的规律和技巧,发明了数十种快速运算的巧妙方法,运算快速准确、方法简便实用,在多年的研究和教学实践中取得了良好的效果,培养“小速算家”数万名。周老师讲课生动活泼,风趣幽默,曾应邀在全国各地讲座近千场,被多家媒体相继报道,深受广大学生和家长喜爱。
知乘活燃放感
速算技巧
一、一种做多位乘法不用竖式的方法。我们都可以口算1X1 10X1,但是,11X12 12X13 12X14呢?
这时候,大家一般都会用竖式,通过竖式计算,得数是132、156、168。其中有趣的规律:积个位上的
数字正好是两个因数个位数字的积。十位上的数字是两个数字个位上的和。百位上的数字是两个因数十
位数字的积。例如:
12X14=168 1=1X1 6=2+4 8=2X4
如果有进位怎么办呢?这个定律对有进位的情况同样适用,在竖式时只要~满几时,就向下一位进几。
~例如:
14X16=224 4=4X6的个位 2=2+4+6 2=1+1X1
试着做做看下面的题:
12X15=? 11X13=? 15X18=? 17X19=?
二、几十一乘以几十一的速算方法
例如: 21×61= 41×91= 41×91= 51×61= 81×91= 41×51= 41×81= 71×81=
这些算式有什么特点呢?是“几十一乘以几十一”的乘法算式,我们可以用:先写十位积,再写十位
和(和满10 进1),后写个位积。“先写十位积,再写十位和(和满10 进1),后写个位积”就是一见到
几十一乘以几十一的乘法算式,如果十位数的和是一位数,我们先直接写十位数的积,再接着写十位数的
和,最后写上1 就一定正确;如果十位数的和是两位数,我们先直接写十位数的积加1 的和,再接着写十
位数的和的个位数,最后写一个1 就一定正确。
我们来看两个算式:
21×61=
41×91=
用“先写十位积,再写十位和(和满10 进1),后写个位积”这种速算方法直接写得数时的思维过程。
第一个算式,21×61=?思维过程是:2×6=12,2+6=8, 21×61 就等于1281。
第二个算式,41×91=?思维过程是:4×9=36,4+9=13,36+1=37, 41×91 就等于3731。
试试上面题目吧!然后再看看下面几题
61×91= 81×81= 31×71= 51×41=
三、10-20的两位数乘法及乘方速算
方法:尾数相乘,被乘数加上乘数的尾数(满十进位)
【例1】 1 2
X 1 3
----------
1 5 6
(1)尾数相乘2X3=6
(2)被乘数加上乘数的尾数12+3=15
(3)把两计算结果相连即为所求结果
【例2】 1 5
X 1 5
------------
2 2 5
(1)尾数相乘5X5=25(满十进位)
(2)被乘数加上乘数的尾数15+5=20,再加上个位进上的2即20+2=22
(3)把两计算结果相连即为所求结果
四、两位数、三位数乘法及乘方速算
a.首数相同,尾数相加和是十的两位数乘法 方法:尾数相乘,首数加一再相乘
【例1】 5 4
X 5 6
---------
3 0 2 4
(1)尾数相乘4X6=24直接写在十位和个位上
(2)首数5加上1为6,两首数相乘6X5=30
(3)把两结果相连即为所求结果
【例2】 7 5
X 7 5
----------
5 6 2 5
(1)尾数相乘5X5=25直接写在十位和个位上
(2)首数7加上1为8,两首数相乘8X7=56
(3)把两计算结果相连即可
b.尾数是5的三位数乘方速算
方法:尾数相乘,十位数加一,再将两首数相乘
【例】 1 2 5
X 1 2 5
------------
1 5 6 2 5
(1)尾数相乘5X5=25直接写在十位和个位上
(2)首数12加上1为13,再两数相乘13X12=156
(3)两计算结果相连
c.任意两位数乘法
方法:尾数相乘,对角相乘再相加,首数相乘
【例】 3 7
X
X 6 2
---------
2 2 9 4
(1)尾数相乘7X2=14(满十进位)
(2)对角相乘3X2=6;7X6=42,两积相加6+42=48(满十进位)
(3)首数相乘3X6=18加上十位进上的4为18+4=22
(4)把计算结果相连即为所求结果
b.任意两位数及三位平方速算
方法:尾数的平方,首数乘尾数扩大2倍,首数的平方
[例] 2 3
X 2 3
---------
5 2 9
(1)尾数的平方3X3=9(满十进位)
(2)首尾数相乘2X3=6扩大两倍为12写在十位上(满十进位)
(3)首数的平方2X2=4加上十位进上的1为5
(4)把计算结果相连即为所求结果
c.三位数的平方与两位数的平方速算方法相同
[例] 1 3 2
X 1 3 2
------------
1 7 4 2 4
(1)尾数的平方2X2=4写在个位
(2)首尾数相乘13X2=26扩大2倍为52写在个位上(满十进位)
(3)首数的平方13X13=169加上十位进上的5为174
(4)把计算结果相连即为所求结果〖注意:三位数的首数指前两位数字!〗
五、大数的平方速算
方法:把题目与100相差,相差数称之为差数;先算差数的平方写在个位和十位上(缺位补零),
再用题目减去差数得一结果;最后把两结果相连即为所求结果【例】 9 4
X 9 4
-----------
8 8 3 6
(1)94与100相差为6
(2)差数6的平方36写在个位和十位上
(3)用94减去差数6为88写在百位和千位上
(4)把计算结果相连即为所求结果
55 × 55 = ? 27 × 23 = ? 91 × 99 = ?
43 × 47 = ? 88 × 82 = ? 74 × 76 = ?
大家能够很快算出这些算式的正确答案吗?注意,是很快哦!你能吗?
我能--3025 ; 621 ; 9009 ;2021 ; 7216 ; 5624 ;
很神气吧!
速算秘诀:(就以第一题为例好啦)
(1)分别取两个数的第一位,而后一个的要加上一以后,相乘。[5×(5+1)]=30;
(2)再将末尾数相乘的得数写在后面就可以得出正确的答案了。5×5=25;
(3)3025!Bingo!其它依次类推就行了。
仔细看每一个式子里的两位数的十位是相同的,而个位的两数则是相补的。这样的速算秘诀只能
够适用于这种情况的算式。所以说大家千万不要把巧算和真正的速算混淆在一起,真正的速算是任何
数都能算的。
六、关于9的数学速算技巧(两位数乘法)
关于9的口诀:
1 × 9 = 9 2 × 9 = 18 3 × 9 = 27 4 × 9 = 36
5 × 9 = 45 6 × 9 = 54 7 × 9 = 63 8 × 9 = 72
9 × 9 = 81
从上面的口诀口有没有看到从1到9任何一个数和9相乘的积,个位数和十位数的和还是等于9。
你看上面的:0 + 9 =9;1 + 8 = 9;2 + 7 = 9;3 + 6 = 9;
4 + 5 = 9;5 + 4 = 9;6 + 3 = 9;7 + 2 = 9;8 + 1 = 9
下面我们再做一些复杂一点的乘法:
18 × 12 = ? 27 × 12 = ? 36 × 12 = ? 45 × 12 = ?
54 × 12 = ? 63 × 12 = ? 72 × 12 = ? 81 × 12 = ?
关于两位数的乘法,上面的题目中,前面的乘数都是9的倍数,而且个位和十位的和都等于9。
这样我们能不能找到一种简便的算法呢?也就是把两位数的乘法变成一位数的乘法呢?
我们先把上面这些数变一变。
18 = 1 × 10 + 8;27 = 2 × 10 + 7;36 = 3 × 10 + 6;
45 = 4 × 10 + 5;54 = 5 × 10 + 4;63 = 6 × 10 + 3;
72 = 7 × 10 + 2;81 = 8 × 10 + 1;
我们再把上面的数变一变
1 × 10 + 8 = 1 × 9 + 1+8 = 1 × 9 + 9 = 1 × 9 + 9 = 2 × 9
当然如果知道口诀你们可以直接把18 = 2 × 9同样的方法你们可以拆出下面的数,也可以背口诀
27 = 3 × 9 ; 36 = 4 × 9 ;45 = 5 × 9
54 = 6 × 9 ; 63 = 7 × 9 ;72 = 8 × 9
81 = 9 × 9
为了找到计算上面问题的方法,我们把上面的式子再变一次。
18 = 2×(10-1);27 = 3×(10-1);36 = 4×(10-1)
45 = 5×(10-1);54 = 6×(10-1);63 = 7×(10-1)
72 = 8×(10-1);81 = 9×(10-1)
现在我们来算上面的问题:
18 × 12 = 2×(10-1)× 12
= 2 ×(12 ×10 - 12)
= 2 ×(120- 12)
120 - 12 = 108;
这样就有了
18 × 12 = 2 × 108 = 216
是不是把一个两位数的乘法变成了一位数的乘法?
而且可以通过口算就得出结果?我用这种方法教威威算乘法,他只需要我算这一个,后边的题目就自
己会算了。
上面我们的计算好象很麻烦,其实现在总结一下就简单了。
看下一个题目:
27 × 12 = 3×(10-1)× 12 = 3 ×(120- 12)
= 3 × 108 = 324
36 × 12 = 4×(10-1)× 12 = 4 ×(120- 12)
= 4 × 108 = 432
发现什么规律没有?下面的题目好象不用算了,都是把前面的数加1再乘108
45 × 12 = 5 × 108 = 540
54 × 12 = 6 × 108 = 648
63 × 12 = 7 × 108 = 756
72 × 12 = 8 × 108 = 864
81 × 12 = 9 × 108 = 972
我们再看看上面的计算结果,发现什么了吗?
我们把一个两位数乘法变成了一位数的乘法。其中一个乘数的个位和十位的和等于9,这样变化以后的
数中一位数的那个乘数,都是正好比前面的乘数大1。
而后面的一个两位数也有一个特点,就是一个连续数(12),1和2是连续的。
能不能找到一种更简便的计算方法呢?
为了找到一种更简便的算法。我在这里引入一个新的名词——补数。
什么是补数呢?
1 + 9 = 10;2 + 8 = 10;3 + 7 = 10;4 + 6 = 10;5 + 5 = 10;
6 + 4 = 10;7 + 3 = 10;8 + 2 = 10;9 + 1 = 10;
从上面的几个加法可见,如果两个数的和等于10,那么这两个数就互为补数。
也就是说1和9为补数,2和8为补数,3和7为补数,4和6为补数,5的补数还是5就不用记了,只要记4个
就行了。
现在我们再看看上面的计算结果:
拿一个 63 × 12 = 7 × 108 = 756 举例吧
结果的最前面一个数是7(不用管它是什么位),是不是正好等于第一个乘数(63)中前面的数加1?
6 + 1 = 7
结果的后两位怎么算出来的呢?如果拿这个7去乘后面那个乘数(12)的最后一位的补数(8)会是什么?
7 × 8 = 56
呵呵,我们现在不用再分解了,只要把第一个乘数(63)中前面的数加1就是结果的最前面的数,再把这
个数乘以后面那个乘数(12)的最后一位的补数(8)就得到结果的后两位。
这样行吗?如果行的话,那可真是太快了,真的是速算了。
试一试其他的题:
18 × 12 =
第一个乘数(18)的前面的数加1:1 + 1 =2 ——结果最前面的数
拿2去乘第二个乘数(12)的后面的数(2)的补数(8):2×8=16
结果就是 216。看一看上面对吗?
27 × 12 =
结果最前面的数——2 + 1 =3
结果最后面的数——3 ×8 = 24
结果 324
36 × 12 =
速算技巧
速算技巧:列式,当数据较大时,运算难度大,把a、b都看成两位数,进行两位数乘法,在选项一定的情况下,可以保证精度。两位数乘速算时,遵循口算速算法则,可以很快得答案。
1、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;
2、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。
3、某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。
4、在乘法或者除法中使用”截位法“时,若答案需要有N位精度,则计算过程的数据需要有N+1位的精度,但具体情况还得由截位时误差的大小以及误差的抵消情况来决定。
扩展资料:
加法速算:计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀,本位相加(针对进位数)减加补,前位相加多加一,就可以彻底解决任意位数从高位数到低位数的加法速算问题。
例如:67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
减法速算:计算任意位数的减法速算方法也同样是用一种减法速算通用口诀,本位相减(针对借位数)加减补,前位相减多减一,就可以彻底解决任意位数从高位数到低位数的减法速算问题。
例如:67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。
参考资料来源:百度百科-速算