求函数值域(求函数值域的8种方法和例题)

更新时间:2023-02-28 22:04:32 阅读: 评论:0

函数的值域怎么算

求函数的值域的常用方法如下:

1、图像法:根据函数图象,观察最高点和最低点的纵坐标。

2、配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。

3、单调性法:利用二次函数的顶点式或对称轴,再根据单调性来求值域。

4、反函数法:若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。

5、换元法:包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围。

6、判别式法:判别式法即利用二次函数的判别式求值域。

7、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。

8、折叠三角代换法:利用基本的三角关系式,进行简化求值。例如:a的平方+b的平方=1,c的平方+d的平方=1,求证:ac+bd小于或等于1。直接计算麻烦,用三角代换法比较简单。做法:设a=sinx ,b=cosx,c=siny ,d=cosy,则ac+bd=sinx*siny+cosx*cosy =cos(y-x),因为我们知道cos(y-x)小于等于1,所以不等式成立。


求函数值域的常用方法

求函数值域的常用方法如下:

1、配方法,将函数配方成顶点式的格式,再根据函数的定义域,求得函数的值域。

2、常数分离,这一般是对于分数形式的函数来说的,将分子上的函数尽量配成与分母相同的形式,进行常数分离,求得值域。

3、逆求法,对于y=某x的形式,可用逆求法,表示为x=某y,此时可看v的限制范围,就是原式的值域了。

4、换元法,对于函数的某一部分,较复杂或生疏,可用换元法,将函数转变成我们熟悉的形式,从而求解。

5、单调性,可先求出函数的单调性(注意先求定义域),根据单调性在定义域上求出函数的值域。

6、基本不等式,根据我们学过的基本不等式,可将函数转换成可运用基本不等式的形式,以此来求值域。

7、数形结合,可根据函数给出的式子,画出函数的图形,在图形上找出对应点求出值域。

8、求导法,求出函数的导数,观察函数的定义域,将端点值与极值比较,求出最大值与最小值,就可得到值域了。

承数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。


怎样求函数的值域???

求函数的值域首先必须明确两点:一点是值域的概念,即对于定义域A上的函数y=f(x)其值域就是指集合C={y|y=f(x),x∈A},另一点是函数的定义域、对应法则是确定函数的依据。

求值域常用方法:

1、图像法:

根据函数图象,观察最高点和最低点的纵坐标。

2、配方法:

利用二次函数的配方法求值域,需注意自变量的取值范围。

3、单调性法:

利用二次函数的顶点式或对称轴,再根据单调性来求值域。

4、反函数法:

若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。

5、换元法:

包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围[2]。

6、判别式法:

判别式法即利用二次函数的判别式求值域。

7、复合函数法:

设复合函数为f[g(x),]g(x) 为内层函数, 为了求出f的值域,先求出g(x)的值域, 然后把g(x) 看成一个整体,相当于f(x)的自变量x,所以g(x)的值域也就是f[g(x)]的定义域,然后根据 f(x)函数的性质求出其值域。

扩展资料:

值域:数学名词,函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。f:A→B中,值域是集合B的子集。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。

常见函数值域:

y=kx+b (k≠0)的值域为R

y=k/x 的值域为(-∞,0)∪(0,+∞)

y=√x的值域为x≥0

y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;

当a<0时,值域为(-∞,4ac-b^2/4a]

y=a^x 的值域为 (0,+∞)

y=lgx的值域为R

参考资料:百度百科-值域


函数的值域怎么求

其没有固定的方法和模式。但常用方法有:
(1)直接法:从变量x的范围出发,推出y=f(x)的取值范围;
(2)配方法:配方法是求“二次函数类”值域的基本方法,形如f(x)=af^(x)+bf(x)+c的函数的值域问题,均可使用配方法
(3)反函数法:利用函数和它的反函数的定义域与值域的互逆关系,通过反函数的定义域,得到原函数的值域。形如y=cx+d/ax+b(a≠0)的函数均可使用反函数法。此外,这种类型的函数值域也可使用“分离常数法”求解。
(4)换元法:运用代数或三角代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域。形如y=ax+b±根号cx+d(a、b、c、d均为常数,且a≠0)的函数常用此法求解。举些例子吧!
(1)y=4-根号3+2x-x^
此题就得用配方法:由3+2x-x^≥0,得-1≤x≤3.
∵y=4-根号-1(x-1)^+4,∴当x=1时,ymin=4-2=2.
当x=-1或3时,ymax=4.
∴函数值域为[2,4]
(2)y=2x+根号1-2x
此题用换元法:
令t=根号1-2x(t≥0),则x=1-t^/2
∵y=-t^+t+1=-(t-1/2)^+5/4,
∵当t=1/2即x=3/8时,ymax=5/4,无最小值.
∴函数值域为(-∞,5/4)
(3)y=1-x/2x+5
用分离常数法
∵y=-1/2+7/2/2x+5,
7/2/2x+5≠0,
∴y≠-1/2

求函数值域方法

求函数值域方法有:

1,配方法(二次函数或二次形式的函数求值域的典型方法)
2,换元法(比如三角换元,整体代换)
3,判别式法

4,利用函数单调性(闭区间上连续函数有最大,最小值)
5,数形结合的方法(利用问题的几何意义,将代数问题转化为几何问题)
6,求导数的方法(似乎所有的给定解析式求最值都可以用求导数的方法,但有些初等问题用导数求解相当啰嗦)
7,反解法(利用函数和它的反函数的定义域和值域的互逆关系,通过恒等变形,求原函数的值域)
8,其它特殊方法

求函数值域的常用方法有:化归法、复合函数法、判别式法、图像法、分离常数法、反函数法、换元法、不等式法、单调性法。在函数中,因变量的变化而变化的取值范围叫做这个函数的值域。


求值域的方法
化归法:
把所要解决的问题,经过某种变化,使之归结为另一个问题*,再通过问题*的求解,把解得结果作用于原有问题,从而使原有问题得解,这种解决问题的方法,我们称之为化归法。

图像法:根据函数图像,观察最高点和最低点的纵坐标。
配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。
单调性法:利用二次函数的顶点式或对称轴,再根据单调性来求值域。
反函数法:若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
换元法:包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围。


函数值域的求法

求函数值域的方法有配方法,常数分离法,换元法,逆求法,基本不等式法,求导法,数形结合法和判别式法等。

配方法:将函数配方成顶点式的格式,再根据函数的定义域求函数的值域,画一个简单图更能便捷直观的求值域。

常数分离:一般是对于分数形式的函数来说的。将分子上的函数尽量配成与分母相同的形式,进行常数分离求得值域。

逆求法:对于y=某x的形式可用逆求法,表示为x=某y,此时可看y的限制范围,就是原式的值域了。

换元法:对于函数的某一部分较复杂或生疏可用换元法,将其转变成我们熟悉的形式求解。

单调性:先求出函数的单调性,注意先求定义域,根据单调性再求函数的值域。

基本不等式:根据我们学过的基本不等式可将函数转换成可运用基本不等式的形式,以此来求值域。

数形结合:可根据函数给出的式子画出函数的图形,在图形上找出对应点求出值域。

求导法:求出函数的导数,观察函数的定义域,将端点值与极值比较,求出最大值与最小值就可得到值域了。

判别式法:将函数转变成某某等于零的形式,再用解方程的方法求出要满足的条件,求解即可。

本文发布于:2023-02-28 18:59:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/167759307250748.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:求函数值域(求函数值域的8种方法和例题).doc

本文 PDF 下载地址:求函数值域(求函数值域的8种方法和例题).pdf

标签:值域   函数   例题   种方法
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|