等差数列前n项和(等差数列前n项和性质)

更新时间:2023-02-28 21:10:30 阅读: 评论:0

等差数列的前n项和公式 是什么?

公式如下:

1.Sn=n*a1+n(n-1)d/2

2.Sn=n(a1+an)/2。

注意: 以上n均属于正整数。

扩展资料:

1.等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。

2.数列是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。

著名的数列有斐波那契数列,三角函数,卡特兰数,杨辉三角等。

参考资料:等差数列求和公式-百度百科


等差数列前n项和公式是什么?

等差数列前N项和公式S=(A1+An)N/2 ,等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。

例如:1,3,5,7,9……(2n-1)。等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2 。注意: 以上整数。

扩展资料

日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。若为等差数列,且有an=m,am=n,则am+n=0。其于数学的中的应用,

可举例:快速算出从23到132之间6的整倍数有多少个,算法不止一种,这里介绍用数列算令等差数列首项a1=24(24为6的4倍),等差d=6;于是令an= 24+6(n-1)<=132 即可解出n=19。


等差数列前n项和公式?

等差数列求和公式:Sn=(a1+an)n/2;Sn=na1+n(n-1)d/2(d为公差);Sn=An2+Bn;A=d/2,B=a1-(d/2)。

加法:

把两个数合并成一个数的运算/把两个小数合并成一个小数的运算/把两个分数合并成一个分数的运算减法: 已知两个加数的和与其中一个加数,求另一个加数的运算。

乘法:

求几个相同加数的和的简便运算。小数乘整数的意义与整数乘法意义相同。一个数乘纯小数就是求这个数的十分之几,百分之几…… 分数乘整数的意义与整数乘法意义相同。

除法:

已知两个因数的积与其中一个因数,求另一个因数的运算。与整数除法的意义相同。




1、加法

a、整数和小数:相同数位对齐,从低位加起,满十进一。

b、 同分母分数:分母不变分子相加。异分母分数:先通分,再相加。

2、减法

a、整数和小数:相同数位对齐,从低位减起,哪一位不够减退一当十再减。

b、 同分母分数:分母不变,分子相减。分母分数:先通分,再相减。

3、乘法

a、整数和小数:用乘数每一位上的数去乘被乘数用哪一-位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同。

b、分数:分子相乘的积作分子,分母相乘的积作分母。能约分的先约分结果要化简。

4、除法

a、整数和小数:除数有几位先看被除数的前几位, (不够就多看一位) ,除到被除数的哪一位,商就写到哪一位上。除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐。

b、甲数除以乙数( 0除外)等于甲数除以乙数的倒数。


等差数列前n项和公式

公式如下:Sn=na1+n(n-1)d/2=(a1+an)n/2。

等差数列的通项公式an=a1+(n-1)d及前n项和公式Sn=na1+n(n-1)d/2=(a1+an)n/2,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了方程的思想。

数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法。

特点介绍:

等差数列的性质是等差数列的定义、通项公式以及前n项和公式等基础知识的推广与变形,熟练掌握和灵活应用这些性质可以有效、方便、快捷地解决许多等差数列问题。应用等差数列的性质解答问题的关键是寻找项的序号之间的关系。


高中数学:等差数列前N项和公式

等差数列前N项和公式为:Sn=n(a1+an)/2或Sn=na1+n(n-1)d/2=dn^2/2+(a1-d/2)n

方法是倒序相加

Sn=1+2+3+……+(n-1)+n

Sn=n+(n-1)+(n-2)+……+2+1

两式相加

2Sn=(1+n)+(2+n-1)+(3+n-2)+……+(n-1+2)+(n+1)=(n+1)+(n+1)+(n+1)+……+(n+1)+(n+1)

一共n项(n+1)

2Sn=n(n+1)

Sn=n(n+1)/2

扩展资料

等差数列的判定

满足以下条件{an}即为等差数列

(1)

(d为常数、n ∈N*)

n ∈N*,n ≥2,d是常数

(2)

(3)

k、b为常数,n∈N*

(4)

A、B为常数,A不为0,n ∈N*

参考资料来源:百度百科-等差数列


等差数列的前N项和公式是什么?

等差数列前N项和公式:

①Sn=n*a1+n(n-1)d/2。

②Sn=n(a1+an)/2。

Sn代表项数之和,n代表项数,a1代表数列的第一项,an代表数列的最后一项,d代表数列的公差。

等差数列的公式:

公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数);

项数=(末项-首项来)÷公差+1;

末项=首项+(项数-1)×公差;

前n项的和Sn=首项×n+项数(项数-1)公差/2;

第n项的值an=首项+(项数-1)×公差;

等差数源列中知项公式2an+1=an+an+2其中{an}是等差数列。


本文发布于:2023-02-28 18:55:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/167758983049001.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:等差数列前n项和(等差数列前n项和性质).doc

本文 PDF 下载地址:等差数列前n项和(等差数列前n项和性质).pdf

标签:等差数列   性质
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|