方差标准差(方差标准差区别)

更新时间:2023-02-28 21:06:36 阅读: 评论:0

方差和标准差的公式是什么?

1、若x1,x2,x3......xn的平均数为M,则方差公式可表示为:

2、标准差的公式

公式中数值X1,X2,X3,......XN(皆为实数),其平均值(算术平均值)为μ,标准差为σ。

方差的性质:

当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。

样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。


方差,标准差的概念是什么?

标准差(Standard Deviation)

各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数

标准差是方差的算术平方根。

标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。

例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。

标准差也被称为标准偏差,或者实验标准差。
关于这个函数在EXCEL中的STDEVP函数有详细描述,EXCEL中文版里面就是用的“标准偏差”字样。但我国的中文教材等通常还是使用的是“标准差”。

公式如图。

P.S.
在EXCEL中STDEVP函数就是下面评论所说的另外一种标准差,也就是总体标准差。在繁体中文的一些地方可能叫做“母体标准差”

因为有两个定义,用在不同的场合:
如是总体,标准差公式根号内除以n,
如是样本,标准差公式根号内除以(n-1),
因为我们大量接触的是样本,所以普遍使用根号内除以(n-1),

方差与标准差

标准差(StandardDeviation),也称均方差(meansquareerror),是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。方差是各个数据与平均数之差的平方的平均数。公式:1、方差s=[(x1-x)^2+(x2-x)^2+(xn-x)^2]/n(x为平均数)2、标准差=方差的算术平方根它们的意义:1、方差的意义在于反映了一组数据与其平均值的偏离程度;2、方差是衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。3、方差的特性在于:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。4、标准差是方差的算术平方根,意义在于反映一个数据集的离散程度。

我们可以代入期望的数学表达形式。比如连续随机变量:

Var(X)=E[(X−μ)2]=∫+∞−∞(x−μ)2f(x)dx

方差概念背后的逻辑很简单。一个取值与期望值的“距离”用两者差的平方表示。该平方值表示取值与分布中心的偏差程度。平方的最小取值为0。当取值与期望值相同时,此时不离散,平方为0,即“距离”最小;当随机变量偏离期望值时,平方增大。由于取值是随机的,不同取值的概率不同,我们根据概率对该平方进行加权平均,也就获得整体的离散程度——方差。

方差的平方根称为标准差(standard deviation, 简写std)。我们常用σ表示标准差

σ=Var(X)−−−−−−√

标准差也表示分布的离散程度。

正态分布的方差

根据上面的定义,可以算出正态分布

E(X)=1σ2π−−√∫+∞−∞xe−(x−μ)2/2σ2dx

的方差为

Var(X)=σ2

正态分布的标准差正等于正态分布中的参数σ。这正是我们使用字母σ来表示标准差的原因!

方差及标准差公式

方差是各个数据与平均数之差的平方的和的平均数,公式为:

标准差:标准差=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n)。是离均差平方的算术平均数的平方根,用σ表示。在概率统计中最常使用作为统计分布程度上的测量。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。

扩展资料:

简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。

虽然样本的真实值是不可能知道的,但是每个样本总是会有一个真实值的,不管它究竟是多少。可以想象,一个好的检测方法,其检测值应该很紧密的分散在真实值周围。

如果不紧密,与真实值的距离就会大,准确性当然也就不好了,不可能想象离散度大的方法,会测出准确的结果。因此,离散度是评价方法的好坏的最重要也是最基本的指标。


方差标准差是什么?

标准差也称为均方差,是反映一组数据离散程度最常用的一种量化形式,是表示精确度的重要指标。方差是各个数据与其算术平均数的离差平方和的平均数。由于方差的计量单位和量纲不便于从经济意义上进行解释,所以实际的统计工作中多用标准差来反映统计数据的差异程度。

方差和标准差的计算方法包括简单平均法和加权平均法。简单平均法即将过去各数据之和除以数据总点数以求得算术平均数作为预测值;加权平均法即利用过去若干个按照发生时间顺序排列起来的同一变量的观测值,并以时间顺序数为权数计算出观测值的加权算术平均数,以作为预测未来期间该变量的预测值。


方差和标准差的公式分别是什么?

方差公式:

标准差公式:标准差=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n)。

性质:设C为常数,则D(C) = 0(常数无波动); D(CX )=$C^2$ D(X ) (常数平方提取,C为常数,X为随机变量)。

标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。

扩展资料:

由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差(SD)。

在统计学中样本的均差多是除以自由度(n-1),它的意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是(n-1)。

所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。

参考资料来源:百度百科——方差

参考资料来源:百度百科——标准差


本文发布于:2023-02-28 18:55:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/167758959647353.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:方差标准差(方差标准差区别).doc

本文 PDF 下载地址:方差标准差(方差标准差区别).pdf

标签:方差   标准差   区别
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|