spss聚类分析步骤是什么?
步骤如下:
操作设备:戴尔电脑
操作系统:win10
1、首先通过快捷方式打开SPSS分析工具,默认显示数据视图。
2、切换到变量视图,然后添加六个变量,分别为姓名、M、C、E、S和R,其中姓名是字符串类型,其他都是数字类型。
3、返回到数据视图,向六个变量列插入对应的数据。
4、点击分析菜单,然后依次选择分类--->系统聚类。
5、打开系统聚类分析窗口,将变量M和变量C移到变量框中。
6、点击右侧统计按钮,打开系统聚类分析:统计窗口,选择集中计划,接着点击继续。
7、单击图按钮,打开图设置窗口,勾选谱系图,然后点击继续。
8、接着点击方法按钮,打开系统聚类分析:方法窗口,聚类方法选择瓦尔德法,然后单击继续。
9、最后点击系统聚类分析窗口中的确定按钮,然后生成系统聚类分析结果和图形展示。
spss怎么做聚类分析
1.在spss中打开数据,选择分析→分类→系统聚类:
2.变量选择f1,f2得分,聚类选择个案,勾选输出统计量和绘图;
3.点击设置统计量,默认选择即可
4.点击选择分类方法,这里选择了离差平方和法;
5.点击绘制,勾选树状图,这个是我们输入查看谱系图的依据。;
6.确定查看谱系图,分析聚类结果,改用不同的分类方法,得到谱系图进行综合分析;
7.由于方法众多,这里选取最为常用较结合实际的离差平方和法进行分析,这里仅给出分组的结果,即聚类分析的方法,每个分组的分析较长不再赘述。
spss如何做聚类分析
聚类分析一般是将样本进行分类,得到几类,然后对几个类别进行命名,以及得到的类别数据一般需要用于后续进一步分析使用等。所以聚类分析后一般需要使用方差分析,这个步骤还比较多,建议你使用在线版本的SPSS软件SPSSAU进行分析,这是个智能化的软件,里面全部把过程都帮你整理好,以及表格也全部进行了智能化规范。
SPSS实操4:聚类分析
我们有时需要对一波总体样本进行分群,从而更好地了解群体之间的差异,通过聚类分析可以帮助我们解决这个问题。聚类分析在市场细分、人群细分等方面可以给我们很多启发。
聚类分析在SPSS中分为系统聚类、K聚类及两步聚类。
从区别上看,系统聚类、K聚类主要针对的是计量资料,而两步具备可同时对计量资料、计数资料进行处理。
尽管在日常工作涉及的问卷中,计数资料涉及得较少,但从结果解读方面,仍然是两步聚类的解读更为直观。
以两步聚类为例,我们来看一个案例:
经过本篇文章学习,您能够对问卷数据做以下分析:
①对总样本进行聚类
②筛选满足不同条件的个案进行进一步分析(选择个案)
TIPS:在两步聚类前,一定要先清洗数据,因跳转题而出现的-3值,要全部清除掉之后再进行聚类操作
1.分析-分类-两步聚类
2.将可能影响到人群细分结果的变量选入分类变量中
连续变量在本次问卷题目中未涉及,因此不选
这一步的变量选择在不确定的情况下,可能需要多次聚类验证,一定要选择聚类效果最佳的那几个变量
这里已经根据最佳效果选择好了相关变量
3.选项-操作默认
若涉及到连续变量,在【要标准化的变量】中,将出现连续变量
这里未涉及连续变量,因此这里未显示任何变量
4.输出
勾选上方的图表和表格、创建聚类成员变量
5.确定
6.结果解读
首先会出现一个简单的图,先来看一下这个图
显示我们输入了8个相关变量,聚类为5类
我们本次预测质量处在【良好】区间(这一步可多试几个变量,选择预测质量最好的那次即可)
双击这张图,会出现2个视图框
左侧还是刚刚的图,右侧则出现了本次5种聚类在总样本的占比情况
请注意,现在左侧视图默认在【模型概要】
我们现在选择【聚类】,会根据预测变量重要性出现一张渐变颜色的表格
逐一选择5个聚类所在的列,右侧选择【单元分布】,会显示聚类比较的结果
回到数据视图中,原表格中最后一新增了一列TSC,显示的数值则是根据本次聚类,每个人对应在哪个分类的结果。
7.想要详细了解各个细分人群在其他变量上的特征,我们根据【选择个案】进行具体分析
数据-选择个案
如果条件满足(先以第1类举例)
TSC列中的数据为1,我们会将第1类人群全部筛选出来,可以针对这个人群做更为具体的分析
点击继续,点击确定
分析具体的人群特点,可以通过描述【描述统计】得到
将这个过程重复5遍,我们就可以知道每个人群的人群特点分别是怎么样的,再对这些细分人群进行命名,就实现了对一波样本进行人群细分的操作。
SPSS聚类分析 系统聚类分析
SPSS聚类分析:系统聚类分析
一、概念:(分析-分类-系统聚类)
系统聚类法常称为层次聚类法、分层聚类法,也是聚类分析中使用广泛的一种方法。它有两种类型,一是对研究对象本身进行分类,称为Q型聚类;另一是对研究对象的观察指标进行分类,称为R型聚类。同时根据聚类过程不同,又分为分解法和凝聚法。
二、聚类方法(分析-分类-系统聚类-方法)
1、聚类方法。可用的选项有组间联接、组内联接、最近邻元素、最远邻元素、质心聚类法、中位数聚类法和Ward法。◎Between-groupslinkage:组间平均距离法。系统默认选项。合并两类的结果使所有的两类的平均距离最小。◎Within-groups linkage:组内平均距离法。当两类合并为一类后,合并后的类中的所有项之间的平均距离最小。◎Nearestneighbor:最近距离法。采用两类间最近点间的距离代表两 类间的距离。◎Furthest Neighbor:最远距离法。用两类之间最远点的距离代表两类之间的距离。◎Centroidclustering:重心法。定义类与类之间的距离为两类中各 样品的重心之间的距离。◎Medianclustering:中位数法。定义类与类之间的距离为两类中各 样品的中位数之间的距离。◎Ward’s method:最小离差平方和法。聚类中使类内各样品的离差平方和最小,类间的离差平方和尽可能大。
2、度量。允许您指定聚类中使用的距离或相似性测量。选择数据类型以及合适的距离或相似性测量:◎Euclideandistance:欧氏距离。◎SquaredEuclideandistance:欧氏距离平方。两项之间的距离是每个变量值之差的平方和。系统默认项。◎Cosline:余弦相似性测度,计算两个向量间夹角的余弦。◎Pearsonconelation:皮尔逊相关系数。它是线性关系的测度,范围是-1~+1。◎Chebychev:切比雪夫距离。◎Block:曼哈顿(Manhattan)距离,两项之间的距离是每个变量值之差的绝对值总和。◎Minkowski:闵科夫斯基距离。◎Customized:自定义距离。
2.1、区间。可用的选项有Euclidean距离、平方Euclidean距离、余弦、Pearson相关性、Chebychev、块、Minkowski及定制。
2.2、计数。可用的选项有卡方测量和phi平方测量。
2.3、二分类。可用的选项有Euclidean距离、平方Euclidean距离、尺度差分、模式差分、方差、离差、形状、简单匹配、Phi 4点相关性、lambda、Anderberg的D、骰子、Hamann、Jaccard、Kulczynski 1、Kulczynski 2、Lance和Williams、Ochiai、Rogers和Tanimoto、Rusl和Rao、Sokal和Sneath 1、Sokal和Sneath 2、Sokal和Sneath3、Sokal和Sneath 4、Sokal和Sneath 5、Yule的Y以及Yule的Q。
3、转换值。允许您在计算近似值之前为个案或值进行数据值标准化(对二分类数据不可用)。可用的标准化方法有z得分、范围1至1、范围0至1、1的最大量级、1的均值和使标准差为1。
4、转换度量。允许您转换距离测量所生成的值。在计算了距离测量之后应用这些转换。可用的选项有绝对值、更改符号和重新调整到0–1范围。
三、统计量(分析-分类-系统聚类-统计量)
1、合并进程表。显示在每个阶段合并的个案或聚类、所合并的个案或聚类之间的距离以及个案(或变量)与聚类相联结时所在的最后一个聚类级别。
2、相似性矩阵。给出各项之间的距离或相似性。
3、聚类成员。显示在合并聚类的一个或多个阶段中,每个个案被分配所属的聚类。可用的选项有单个解和一定范围的解。
案例详解SPSS聚类分析全过程
案例详解SPSS聚类分析全过程
案例数据源:
有20种12盎司啤酒成分和价格的数据,变量包括啤酒名称、热量、钠含量、酒精含量、价格。【一】问题一:选择那些变量进行聚类?——采用“R型聚类”
1、现在我们有4个变量用来对啤酒分类,是否有必要将4个变量都纳入作为分类变量呢?热量、钠含量、酒精含量这3个指标是要通过化验员的辛苦努力来测定,而且还有花费不少成本,如果都纳入分析的话,岂不太麻烦太浪费?所以,有必要对4个变量进行降维处理,这里采用spss R型聚类(变量聚类),对4个变量进行降维处理。输出“相似性矩阵”有助于我们理解降维的过程。
2、4个分类变量量纲各自不同,这一次我们先确定用相似性来测度,度量标准选用pearson系数,聚类方法选最远元素,此时,涉及到相关,4个变量可不用标准化处理,将来的相似性矩阵里的数字为相关系数。若果有某两个变量的相关系数接近1或-1,说明两个变量可互相替代。3、只输出“树状图”就可以了,个人觉得冰柱图很复杂,看起来没有树状图清晰明了。从proximitymatrix表中可以看出热量和酒精含量两个变量相关系数0.903,最大,二者选其一即可,没有必要都作为聚类变量,导致成本增加。至于热量和酒精含量选择哪一个作为典型指标来代替原来的两个变量,可以根据专业知识或测定的难易程度决定。(与因子分析不同,是完全踢掉其中一个变量以达到降维的目的。)这里选用酒精含量,至此,确定出用于聚类的变量为:酒精含量,钠含量,价格。
【二】问题二:20中啤酒能分为几类?——采用“Q型聚类”1、现在开始对20中啤酒进行聚类。开始不确定应该分为几类,暂时用一个3-5类范围来试探。Q型聚类要求量纲相同,所以我们需要对数据标准化,这一回用欧式距离平方进行测度。2、主要通过树状图和冰柱图来理解类别。最终是分为4类还是3类,这是个复杂的过程,需要专业知识和最初的目的来识别。我这里试着确定分为4类。选择“保存”,则在数据区域内会自动生成聚类结果。【三】问题三:用于聚类的变量对聚类过程、结果又贡献么,有用么?——采用“单因素方差分析”1、聚类分析除了对类别的确定需讨论外,还有一个比较关键的问题就是分类变量到底对聚类有没有作用有没有贡献,如果有个别变量对分类没有作用的话,应该剔除。2、这个过程一般用单因素方差分析来判断。注意此时,因子变量选择聚为4类的结果,而将三个聚类变量作为因变量处理。方差分析结果显示,三个聚类变量sig值均极显著,我们用于分类的3个变量对分类有作用,可以使用,作为聚类变量是比较合理的。【四】问题四:聚类结果的解释?——采用”均值比较描述统计“1、聚类分析最后一步,也是最为困难的就是对分出的各类进行定义解释,描述各类的特征,即各类别特征描述。这需要专业知识作为基础并结合分析目的才能得出。2、我们可以采用spss的means均值比较过程,或者excel的透视表功能对各类的各个指标进行描述。其中,report报表用于描述聚类结果。对各类指标的比较来初步定义类别,主要根据专业知识来判定。这里到此为止。以上过程涉及到spss层次聚类中的Q型聚类和R型聚类,单因素方差分析,means过程等,是一个很不错的多种分析方法联合使用的案例。