什么是质因数举例说明
一个自然数的因数中,为质数的因数叫做这个数的质因数。
例如:24的因数有1、2、3、4、6、8、12、24,其中是质数的只有2和3,那么2和3都叫做24的质因数。其他的都不是。
把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。
例如:24=2×2×2×3
任何一个合数,都可以用几个质因数相乘的形式表示。
质因数是什么?
质因数,就是指一个正整数的约数,并且该数还属于是质数的数字,质因数有时候也被我们叫做“素因数”和“质因子”,举例子来说,在2×2×2=8这个等式当中,数字2是数字8的约数,且2还属于质数,就称2是8的质因数。
如果两个为正数的正整数,在除开数字1之外,就没有了其他任何相同的质因数,我们就可以说这两个正整数互质。质因数这一概念在因数分解当中有着非常重要的作用将一个式子用8=2×2×2这种形式表现出来,就可以称它为分解质因数。
扩展资料
求几个数最大公因数的方法,开始时用观察比较的方法,即:先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数。
例求12与18的最大公因数。
12的因数有:1、2、3、4、6、12 。
18的因数有:1、2、3、6、9、18。
12与18的公因数有:1、2、3、6。
12与18的最大公因数是6。
什么叫质因数
质因数是指能整除给定正整数的质数。除了1以外,两个没有其他共同质因子的正整数称为互质,因为1没有质因子,1与任何正整数(包括1本身)都是互质。质因数就是一个数的约数,并且是质数。
比如8=2×2×2,2就是8的质因数;12=2×2×3,2和3就是12的质因数。把一个式子以12=2×2×3的形式表示,叫做分解质因数。分解质因数的方法是先用一个合数的最小质因数去除这个合数,得出的数若是一个质数,就写成这个合数相乘形式;若是一个合数就继续按原来的方法,直至最后是一个质数 。
分解质因数的有两种表示方法,除了最常用的“短除分解法”之外,还有一种方法就是“塔形分解法”。分解质因数对解决一些自然数和乘积的问题有很大的帮助,同时又为求最大公约数和最小公倍数做了重要的铺垫。因此在数论里,质因数是指能整除给定正整数的质数。
质因数是什么意思
质因数是指在数论中,素数因子(素数因子或素数因子)是指将给定的正整数相除的素数。除1外,没有其他公共素数因子的两个正整数称为倒数素数。因为1没有素数因子,所以1和任何正整数(包括1本身)都是素数。
正整数的因式分解可以将正整数表示为一系列素数因子的乘法,而素数因子(如重复)可以表示为指数。根据算术基本定理,任何正整数都有一个唯一的素因式分解公式。只有一个素数因子的正整数是素数。
每一个和都可以用几个素数的乘法来写,这些素数称为这个和的素数因子。如果一个素数是某个数的因子,那么就说这个素数是这个数的一个素数因子;这个因子必须是一个素数。
扩展资料:
分解质因数代码:
将一个正整数分解质因数。例如:输入90,打印出90=2*3*3*5。
程序分析:对n进行分解质因数,应先找到一个最小的质数k,然后按下述步骤完成:
(1)如果这个质数恰等于n,则说明分解质因数的过程已经结束,打印出即可。
(2)如果n>k,但n能被k整除,则应打印出k的值,并用n除以k的商作为新的正整数n,重复执行第一步。
(3)如果n不能被k整除,则用k+1作为k的值,重复执行第一步。
参考资料来源:
百度百科-质数
百度百科-分解质因数
质因数指什么意思?
就是一个数的约数,并且是质数,比如8=2×2×2,2就是8的质因数。12=2×2×3,2和3就是12的质因数。把一个式子以12=2×2×3的形式表示,叫做分解质因数。16=2×2×2×2,2就是16的质因数,把一个合数写成几个质数相乘的形式表示,这也是分解质因数。 分解质因数的方法是先用一个合数的最小质因数去除这个合数,得出的数若是一个质数,就写成这个合数相乘形式;若是一个合数就继续按原来的方法,直至最后是一个质数 。 分解质因数的有两种表示方法,除了大家最常用知道的“短除分解法”之外,还有一种方法就是“塔形分解法”(参见上图)。 分解质因数对解决一些自然数和乘积的问题有很大的帮助,同时又为求最大公约数和最小公倍数做了重要的铺垫。
编辑本段分解质因数
一个合数用几个质数相乘的形式表示出来,叫做分解质因数。 分解质因数只针对合数,把一个合数写成几个质数相乘的形式
编辑本段分解质因数的方法
短除法
求最大公因数的一种方法,也可用来求最小公倍数。 求几个数最大公因数的方法,开始时用观察比较的方法,即:先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数。 例如:求12与18的最大公因数。 12的因数有:1、2、3、4、6、12。 18的因数有:1、2、3、6、9、18。 12与18的公因数有:1、2、3、6。 12与18的最大公因数是6。 这种方法对求两个以上数的最大公因数,特别是数目较大的数,显然是不方便的。于是又采用了给每个数分别分解质因数的方法。 12=2×2×3 18=2×3×3 12与18都可以分成几种形式不同的乘积,但分成质因数连乘积就只有以上一种,而且不能再分解了。所分出的质因数无疑都能整除原数,因此这些质因数也都是原数的约数。从分解的结果看,12与18都有公约数2和3,而它们的乘积2×3=6,就是 12与18的最大公约数。 采用分解质因数的方法,也是采用短除的形式,只不过是分别短除,然后再找公约数和最大公约数。如果把这两个数合在一起短除,则更容易找出公约数和最大公约数。 从短除中不难看出,12与18都有公约数2和3,它们的乘积2×3=6就是12与18的最大公约数。与前边分别分解质因数相比较,可以发现:不仅结果相同,而且短除法竖式左边就是这两个数的公共质因数,而两个数的最大公约数,就是这两个数的公共质因数的连乘积。 实际应用中,是把需要计算的两个或多个数放置在一起,进行短除。 在计算多个数的最小公倍数时,对其中任意两个数存在的约数都要算出,其它无此约数的数则原样落下。最后把所有约数和最终剩下无法约分的数连乘即得到最小公倍数。 只含有1个质因数的数一定是亏数。