等腰三角形的周长公式怎么算
等腰三角形的周长= 底边+ 腰长x2。
等腰三角形(isosceles triangle),指至少有两边相等的三角形,相等的两个边称为这个三角形的腰。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形的两个底角度数相等(简写成“等边对等角”)。
等腰三角形性质:
1、等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2、等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)。
3、等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4、等腰三角形底边上的垂直平分线到两条腰的距离相等。
5、等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
等腰三角形周长公式
等腰三角形周长=边长+边长+边长
等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等,直角边夹亦直角锐角45,斜边上中线垂线,顶角角平分线三线合一,等腰直角三角形斜边上的高为外接圆的半径R。
正弦定理:sinA/a=sinB/b=sinc/C
余弦定理:
a^2=b^2+c^2-2bc cosA
b^2=a^2+c^2-2ac cosB
c^2=a^2+b^2-2ab cosA
扩展资料:
等腰直角三角形的边角之间的关系 :
(1)三角形三内角和等于180°。
(2)三角形的一个外角等于和它不相邻的两个内角之和。
(3)三角形的一个外角大于任何一个和它不相邻的内角。
(4)三角形两边之和大于第三边,两边之差小于第三边。
(5)在同一个三角形内,等边对等角,等角对等边。
已知:△ABC中,∠A=60°,且AB+AC=a,
求证:当三角形的周长最短时,三角形是等边三角形。
证明:AC=a-AB
根据余弦定理
BC2=AB2+BC2-2AB*BC*cosA
BC2=AB2+BC2-AB*BC=AB2+(a-AB)2-AB*(a-AB)=3AB2-3a*AB+a2=3(AB-a/2)2+a2/4
所以当AB=a/2时,BC=a/2最小
AC=a-a/2=a/2
这时,周长为AB+AC+BC=a+BC=a+a/2=3a/2最短
AB=AC=BC=a/2
所以当周长最短时的三角形是正三角形。
参考资料来源:百度百科——等腰三角形
等腰三角形的周长公式是怎么算的
等腰三角形的周长= 底边+ 腰长x2。
三角形的周长是三条边相加,等腰三角形是指至少有两边相等的三角形,相等的两个边称为这个三角形的腰,另一边叫做底边,所以等腰三角形的周长= 底边+ 腰长x2。
扩展资料:
各种三角形的周长公式:
不规则的三角形:周长=边长+边长+边长;
两条边相等的等腰三角形:周长=底边+ 腰长x2;
三条边相等的等边三角形:周长=边长x3。
参考资料:百度百科-三角形
等腰三角形的周长公式是什么
等腰三角形的周长怎么算
等腰三角形周长公式:三角形的周长=三个边的和,等腰三角形的周长=底边+2×腰长。等腰三角形指至少有两边相等的三角形,相等的两个边称为这个三角形的腰。另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
等腰三角形分类
1、定义
有一个角是直角的等腰三角形,叫做等腰直角三角形。它是一种特殊的三角形,具有所有等腰三角形的性质,同时又具有所有直角三角形的性质。
2、关系
等腰直角三角形的边角之间的关系:
(1)三角形三内角和等于180°。
(2)三角形的一个外角等于和它不相邻的两个内角之和。
(3)三角形的一个外角大于任何一个和它不相邻的内角。
(4)三角形两边之和大于第三边,两边之差小于第三边。
(5)在同一个三角形内,等边对等角,等角对等边。
3、四条特殊的线段:角平分线,中线,高,中位线。
(1)三角形的角平分线的交点叫做三角形的内心,它是三角形内切圆的圆心,它到各边的距离相等。
(2)三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的距离相等。
(3)三角形的三条中线的交点叫三角形的重心,它到每个顶点的距离等于它到对边中点的距离的两倍。
(4)三角形的三条高或它们的延长线的交点叫做三角形的垂心。
(5)三角形的中位线平行于第三边且等于第三边的二分之一。
(6)三角形斜边上的高等于斜边的一半。
等腰直角三角形的周长怎么算?
本文发布于:2023-02-28 18:53:00,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/zhishi/a/167758781247965.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:等腰三角形周长公式(等腰三角形周长公式用字母表示).doc
本文 PDF 下载地址:等腰三角形周长公式(等腰三角形周长公式用字母表示).pdf
留言与评论(共有 0 条评论) |