初一数学应用题
1、每个班都要和其他班比赛12-1=11场,设这个班胜了x场,那么负了(11-x)场
由题意得2x+(11-x)=18
解得
x=7
11-x=4
所以这个班胜7场,负4场。
2(1)、原价鸡蛋每个14/30元
,李明买两箱特价鸡蛋后实际消费了30*2-20=40个,照这样计算每个鸡蛋用了12*2/40=3/5=18/30元,比原价鸡蛋贵,所以李明买两箱鸡蛋不合算。
(2)、设张新买了x箱特价鸡蛋,依题意得:12x=14x*2-96
解得:x=6
所以张新买了6箱特价鸡蛋。6
箱鸡蛋共有30*6=180个,因此张新店里平均每天要消费鸡蛋180/18=10个才不会浪费。
3(1)、显然,李丽到外婆家的路程大于3千米,她先用8元行3千米,还剩(17.6-8)/1.6=6千米,所以李丽家到外婆家相距3+6=9千米。
(2)、王老师来回如果用单程计费要用[8+(6-3)*1,6]*2=25.6元,如果往返一次性计费要用8+(3+6)*1.2=18.8元,所以采用往返一次性计费合算。
初一数学应用题
1、小明在规定时间内由学校前往目的地,如果他每小时走35公里,那么他就要迟到2小时,如果他每小时走50公里,那么他就可以比规定时间早到一小时,求学校与目的地的距离。
设学校与目的地的距离为X公里,规定的时间为Y小时
X/35=Y+2
X/50=Y-1
整理,得
X=35Y+70
X=50Y-50
所以
35Y+70=50Y-50
15Y=120
Y=8
X=30*8+70=310
学校与目的地的距离为310公里
2、一个两位数,它的数字之和为12,如果把十位数字和个位数字对换,所得新数比原数小18,求原来的两位数。
设这个两位数的十位数字为X,个位数字为Y
X+Y=12......(1)
(10X+Y)-(10Y+X)=18.....(2)
整理(2),得
X-Y=2..........(3)
(1)+(3),得
2X=14
X=7
7+Y=12
Y=5
所以原来的两位数是75
3、某公司以两种形式存款20万元,一种存款的年利率为1.4%,另一种为3.7%,一年后共得利息6250元,则两种存款价格分别为多少?
设年利率为1.4%存款金额为X万元,年利率为3.7%存款金额为Y万元
1.4%X+3.7%Y=0.625.....(1)
X+Y=20........(2)
由(2),得
Y=20-X,代入(1)
1.4%X+3.7%(20-X)=0.625
0.74-2.3%X=0.625
X=5
Y=20-5=15
年利率为1.4%存款金额为5万元,年利率为3.7%存款金额为15万元
4、一个两位数,其个位数字比十位数字大2,已知这个两位数不小于20,不大于40,求这两位数。
设这两位数个位数字为X,十位数字为Y
X-Y=2...........(1)
20<=10Y+X<=40.....(2)
由(1),得
X=Y+2,代入(2)式中
20<=10Y+Y+2<=40
20<=11Y+2<=40
18<=11Y<=38
1.6<=Y<=3.5
Y=2或Y=3
则X=2+2=4,或X=3+2=5
所以这两位数是24或是35
初一数学应用题大全 简单
1.水果超市运来苹果2500千克,比运来的梨的2倍少250千克.这个超市运来梨多少千克?
2.A、B两地相距300千米,甲车从A地出发24千米后,乙车才从B地相向而行.已知甲车每小时行40千米,乙车每小时行52千米,若甲车是上午8时出发,两车相遇
时是几时几分?
3.家店商场运来一批洗衣机和彩电,彩电的台数是洗衣机的3倍,现在每天平均售出10台洗衣机和15台彩电,洗衣机售完后,彩电还剩下120台没有售出,运来洗
衣机、彩电各多少台?
4.小民以每小时20千米的速度行使一.段路程后,立即沿原路以每小时30千的速度返回原出发地,这样往返一次的平均速度是多少?
5.粮店运来大米,面粉共3700千克,已知运来的面粉比大米的2倍多100千克,运来大米、面粉各多少千克?
6.一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,则剩余1只船,求有多少只船?
7.学校举办的美术展览中,有50幅水彩画、80画幅蜡笔画.蜡笔画比水彩画多几分之几?水彩画比蜡笔画少几分之几?
8.某校航空模型小组在飞机模型比赛中,第一架模型飞机比第二架模型飞机少飞行480米.已知第一架模型飞机的速度比第二架模型飞机的速度快1米/秒,两架模型
飞机在空中飞行的时间分别为12分和16分,这两架模型飞机各飞行了多少距离?
9.一条环形跑道长400米,甲每分钟行80米,乙每分钟行120米.甲乙两人同时同地通向出发,多少分钟后他们第一次相遇?若反向出发,多少时间后相遇?
10.甲乙两人同时从A,B两地出发,相向而行,3小时后两人在途中相遇已知A,B两地相距24千米,甲乙两人的行进速度之比是2:3.问甲乙两人每小时各行多少千米.
11.已知甲,乙两地相距290千米,现有一汽车以每小时40千米的速度从甲地开往乙地,出发30分钟后,另有一辆摩托车以每小时50千米的速度从乙地开往甲地.问摩托
车出发后几小时与汽车相遇?
12.小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?
13.甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点.甲几小时到达中点?
14.甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇.如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙.已知甲速度是15千米/时
,求乙的速度.
15.一个三角形的底边长4.3厘米,面积是17.2厘米.它的高是多少厘米?
16.去年小明比他爸爸小28岁,今年爸爸的年龄是小明的8倍.小明今年多少岁?
17.果园里梨树和桃树共有365棵,桃树的棵树比梨树的2倍多5棵.果园里梨树和桃树各有多少棵?
18.一辆汽车第一天行了3小时,第二天行了5小时,第一天比第二天少行90千米.平均每小时行多少千米?
19.甲、乙两地相距1000米,小华从甲地、小明从乙地同时相向而行,小华每分钟走80米,小明每分钟走45米.两人几分相遇?
20.两地间的路程是210千米,甲、乙两辆汽车同时从两地相向开出,3.5小时相遇,甲车每小时行28千米.乙车每小时行多少千米?
21.甲、乙两地相距189千米,一列快车从甲地开往乙地每小时行72千米,一列慢车从乙地去甲地每小时行54千米.若两车同时发车,几小时后两车相距31.5千米
?
22.一个筑路队要筑1680米长的路.已经筑了15天,平均每天筑60米.其余的12天筑完,平均每天筑多少米?
23.学校买来6张桌子和12把椅子,共付215.40元,每把椅子7.5元.每张桌子多少元?
24.菜场运来萝卜25筐,黄瓜32筐,共重1870千克.已知每筐萝卜重30千克,黄瓜每筐重多少千克?
25.用两段布做相同的套装,第一段布长75米,第二段长100米,第一段布比第二段布少做10套.每套服装用布多少米?
26.红光农具厂五月份生产农具600件,比四月份多生产25%,四月份生产农具多少件?
27.红星纺织厂有女职工174人,比男职工人数的3倍少6人,全厂共有职工多少人?
28.蓓蕾小学三年级有学生86人,比二年级学生人数的2倍少4人,二年级有学生多少人?
29.某校有男生630人,男、女生人数的比是7∶8,这个学校女生有多少人?
30.张华看一本故事书,第一天看了全书的15%少4页,这时已看的页数与剩下页数的比是1∶7.这本故事书共有多少页?
31.一个书架有两层,上层放书的本数是下层的3倍;如果把上层的书取30本放到下层,那么两层书的本数正好相等.原来两层书架上各有书多少本?
32.第一层书架放有89本书,比第二层少放了16本,第三层书架上放有的书是一、二两层和的1.5倍,第三层放有多少本书?
艺书的本数与其他两种书的本数的比是1∶5,工具书和文艺书共有180本.图书箱里共有图书多少本?
33.有甲、乙两个同学,甲同学积蓄了27元钱,两人各为灾区人民捐款15元后,甲、乙两个同学剩下的钱的数量比是3∶4,乙同学原来有积蓄多少元?
34.小红和小芳都积攒了一些零用钱.她们所攒钱的比是5∶3,在“支援灾区”捐款活动中小红捐26元,小芳捐10元,这时她们剩下的钱数相等.小红原来有多少
钱?
35.学校买回315棵树苗,计划按3∶4分给中、高年级种植,高年级比中年级多植树多少棵?
36.三、四、五年级共植树180棵,三、四、五年级植树的棵树比是3∶5∶7.那么三个年级各植树多少棵?
37.学校计划把植树任务按5∶3分给六年级和其它年级.结果六年级植树的棵数占全校的75%,比计划多栽了20棵.学校原计划栽树多少棵?
38.一杯80克的盐水中,有盐4克,现在要使这杯盐水中盐与水的比变为1∶9,需加多少克盐或蒸发多少克水?
39.水果店运来苹果和梨共540千克,苹果和梨重量的比是12∶15.运来梨多少千克?
40.水果店运来橘子300千克,运来的葡萄比橘子多50千克,运来苹果的重量是葡萄的2倍,苹果比橘子多运来多少千克?
41.把960千克的饲料按7∶5分给甲、乙两个养鸡专业户.甲专业户比乙专业户多分得饲料多少千克?
42.甲、乙两个仓库原存放的稻谷相等.现在甲仓运出稻谷14吨,乙仓运出稻谷26吨,这时甲仓剩下的稻谷比乙仓剩下的稻谷多40%.甲、乙两个仓库原来各存放
稻谷多少吨?
43.学校操场是一个长方形,周长是280米,长、宽的比是4∶3,这个操场的长、宽各是多少米?
44.碧波幼儿园内有一块巧而美的长方形花坛,周长是64米,长与宽的比是5∶3,这块花坛占地多少平方米?
45.在一幅比例尺是 的地图上,量得甲、乙两地的距离是5厘米,甲、乙两地的实际距离是多少千米?
46.某玩具厂生产一批儿童玩具,原计划每天生产120件,75天完成.为了迎接“六一”儿童节,实际只用60天就完成了任务.实际每天生产玩具多少件?
47.甲、乙两个家具厂生产同一规格的单人课桌、椅,甲可以生产1800张桌子,乙可以生产1500个椅子一共可生产1500套课桌椅.现在两厂联合生产,经过合理安
排,尽量发挥各自特长.现在两厂每月比过去可多生产课桌椅多少套?
48.建筑工地要运122吨水泥,用一辆载重4吨的汽车运了18次后,余下的用一辆载重2.5吨的汽车运,还要运多少次?
49.空调机厂四月份生产空调机1800台,五月份比四月份增产10%.四、五月份共生产空调机多少台?
50.师徒两人合作生产一批零件,师傅每小时生产40个,徒弟每小时生产30个,如完成任务时徒弟正好生产了450个,这批零件共几个?
51、学校买彩色粉笔45盒,买的白粉笔比彩色粉笔多15盒.一共买多少盒粉笔?
52、一个空筐重2千克,往筐里放入32千克花生.装着花生的筐的重量是空筐的多少倍?
52、粮店运来两车面粉,每车装80袋,每袋25千克.这个粮店运来多少千克面粉?(用两种方法解答)
53、三年级同学到菜园收白菜,分成4组,每组11人,平均每人收45千克.一共收白菜多少千克?
54.化肥厂计划生产7200吨化肥,已经生产了4个月,平均每月生产化肥1200吨,余下的每月生产800吨,还要生产多少个月才能完成?
55. 塑料厂计划生产1300件塑料模件,6天生产了780件.照这样计算,剩下的还要生产多少天才能完成?
56.李师傅上午4小时生产了252个零件,照这样的速度下午又工作3小时.李师傅这一天共生产零件多少件?
57. 水泥厂计划生产水泥3600吨,用20天完成.实际每天比计划多生产20吨,实际多少天完成任务?
58.一堆煤3.6吨,计划可以烧10天,改进炉灶后,每天比原计划节约0.06吨,这堆煤现在可以烧多少天?
59. 甲、乙两地相距420千米,一辆客车从甲地到乙地计划行使7小时.实际每小时比原计划多行使10千米,实际几小时到达?
60.小强从家回校上课,如果每分钟走50米,12分钟回到学校,如果每分钟多走10米,提前几分钟可以回到学校?
初一数学应用题60题
1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完?
还要运x次才能完
29.5-3*4=2.5x
17.5=2.5x
x=7
还要运7次才能完
2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?
它的高是x米
x(7+11)=90*2
18x=180
x=10
它的高是10米
3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?
这9天中平均每天生产x个
9x+908=5408
9x=4500
x=500
这9天中平均每天生产500个
4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?
乙每小时行x千米
3(45+x)+17=272
3(45+x)=255
45+x=85
x=40
乙每小时行40千米
5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?
平均成绩是x分
40*87.1+42x=85*82
3484+42x=6970
42x=3486
x=83
平均成绩是83分
6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?
平均每箱x盒
10x=250+550
10x=800
x=80
平均每箱80盒
7、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?
平均每组x人
5x+80=200
5x=160
x=32
平均每组32人
8、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?
食堂运来面粉x千克
3x-30=150
3x=180
x=60
食堂运来面粉60千克
9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?
平均每行梨树有x棵
6x-52=20
6x=72
x=12
平均每行梨树有12棵
10、一块三角形地的面积是840平方米,底是140米,高是多少米?
高是x米
140x=840*2
140x=1680
x=12
高是12米
11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米?
每件儿童衣服用布x米
16x+20*2.4=72
16x=72-48
16x=24
x=1.5
每件儿童衣服用布1.5米
12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?
女儿今年x岁
30=6(x-3)
6x-18=30
6x=48
x=8
女儿今年8岁
13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?
需要x时间
50x=40x+80
10x=80
x=8
需要8时间
14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?
苹果x
3x+2(x-0.5)=15
5x=16
x=3.2
苹果:3.2
梨:2.7
15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点?
甲x小时到达中点
50x=40(x+1)
10x=40
x=4
甲4小时到达中点
16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。
乙的速度x
2(x+15)+4x=60
2x+30+4x=60
6x=30
x=5
乙的速度5
17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。问原来两根绳子各长几米?
原来两根绳子各长x米
3(x-15)+3=x
3x-45+3=x
2x=42
x=21
原来两根绳子各长21米
18.某校买来7只篮球和10只足球共付248元。已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?
每只篮球x
7x+10x/3=248
21x+10x=744
31x=744
x=24
每只篮球:24
每只足球:8
小明家中的一盏灯坏了,现想在两种灯裏选购一种,其中一种是11瓦(即0.011千瓦)的节能灯,售价60元;另一种是60瓦(即0.06千瓦)的白灯,售价3元,两种灯的照明效果一样,使用寿命也相同。节能灯售价高,但是较省电;白灯售价低,但是用电多。如果电费是1元/(千瓦时),即1度电1元,试根据课本第三章所学的知识内容,给小明意见,可以根据什麼来选择买哪一种灯比较合理?
参考资料:
(1) 1千瓦=1000瓦
(2) 总电费(元)=每度电的电费(元/千瓦时)X灯泡功率(千瓦)X使用时间(小时)
(3) 1度电=1千瓦连续使用1小时
假设目前电价为1度电要3.5元
如果每只电灯泡功率为21瓦,每小时用电则为0.021度。
每小时电费= 3.5元 X 0.021 =0.0735元
每天电费=0.0735 X 24小时 =1.764元
每月电费=1.764 X 30天 =52.92元
这是一个简单的一元一次方程的求解平衡点问题,目标是从数个决策中找出各个平衡点,从不同的平衡点选择中来找出较优的决策。
解答过程:
设使用时间为A小时,
1*0.011*A+60=1*0.06*A+3
这个方程的意义就是,当使用节能灯和白灯的时间为A小时的时候,两种灯消耗的钱是相同的。解方程。
A=1163.265小时
也就是说当灯泡可以使用1163.265小时即48.47天的时候两个灯泡所花费的钱的一样多的。
那么如果灯泡寿命的时间是48.47天以下,那么白灯比较经济,寿命是48.47天以上,节能灯比较经济。
为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?
设总用电x度:[(x-140)*0.57+140*0.43]/x=0.5
0.57x-79.8+60.2=0.5x
0.07x=19.6
x=280
再分步算: 140*0.43=60.2
(280-140)*0.57=79.8
79.8+60.2=140
1)某大商场家电部送货人员与销售人员人数之比为1:8。今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。结果送货人员与销售人数之比为2:5。求这个商场家电部原来各有多少名送货人员和销售人员?
设送货人员有X人,则销售人员为8X人。
(X+22)/(8X-22)=2/5
5*(X+22)=2*(8X-22)
5X+110=16X-44
11X=154
X=14
8X=8*14=112
这个商场家电部原来有14名送货人员,112名销售人员
现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?
设:增加x%
90%*(1+x%)=1
解得: x=1/9
所以,销售量要比按原价销售时增加11.11%
甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/
设甲商品原单价为X元,那么乙为100-X
(1-10%)X+(1+5%)(100-X)=100(1+2%)
结果X=20元 甲
100-20=80 乙
甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间的人数。
设乙车间有X人,根据总人数相等,列出方程:
X+4/5X-30=X-10+3/4(X-10)
X=250
所以甲车间人数为250*4/5-30=170.
说明:
等式左边是调前的,等式右边是调后的
甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)
设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288
1.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。
二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X
180*2=60[X-(30-X)]
X=18
即甲车的速度是18米/秒,乙车的速度是:12米/秒
两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]
X=2。4
即停电了2。4小时。
1.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。
2.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
注意:说明理由!!!
列一元一次方程解!!!
二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X
180*2=60[X-(30-X)]
X=18
即甲车的速度是18米/秒,乙车的速度是:12米/秒
补充回答:
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]
X=2。4
即停电了2。4小时。
1.再一次数学测验中,老师出了25道选择题,每个题都有四个选项,有且只有一个选项是正确的,老师的评分标准是:答对一道题给4分,不答或答错一题倒扣1分,问:
(1)一名同学得了90分,这位同学答对了几道题?
(2)一名同学得了60分,这位同学答对了几道题?
2.光明中学组织七年级师生春游,如果单租45座客车若干辆,则刚好坐满;如果单租60座的客车,可少租一辆,且余15个座位。
(1)求参加春游的师生总人数
(2)已知45座客车的租金为每天250元,60座客车的租金为每天300元,单
租哪种客车省钱?
(3)如果同时租用这两种客车,那么两种客车分别租多少辆最省钱?写出租车方案。
3.一张圆桌由一个桌面和四条腿组成,如果1m三次方,木料可制作圆桌的桌面50个,或制桌腿300条,现有5m三次方,木料,请你设计一下,用多少木料做桌腿,恰好配成圆桌多少张。
解答后请思考
(1)在建立一元一次方程模型解决实际问题的过程中要把握什么?
(2)解一元一次方程步骤有那些?
4.有一个三位数,其各数位的数字和是16,十位数字是个位数字和百位数字的和,如果把百位数字与个位数字对调,那么新数比原数大594,求原数。(一元一次解答)
5.把99拆成4个数,使第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到结果都相等,应该怎样拆?
答案:
1.(1)解:设该同学答对X道题,根据题意答错的为(25-X).
4*X-1*(25-X)=90
4*X-25+X=90
5*X=115
X=23
(2)解:设该同学答对X道题,根据题意答错的为(25-X).
4*X-1*(25-X)=60
4*X-25+X=60
5*X=85
X=17
2.根据题意设租45座客车为X辆可坐满,则需X-1辆60座的可余15空座.
45*X=60*(X-1)-15
45*X=60*X-60-15
15*X=75
X=5
(1)参加春游的总人数为45人*5辆=225人.
(2)45座的每天需要钱为250元*5辆=1250元,60座的每天需要钱为300元*(5-1)辆=1200元,所以租60座的较省钱.
(3)租3辆60座的1辆45座最划算,3*300+1*250=1150
初一数学应用题?
1.解:设原计划生产x个零件。
(x/13+10)×12=x+60
x=780
答:原计划生产780个零件。
2.有一养鱼池,装有A,B两个进水管和一个排水管C,若单独开放A管,45分钟可以注满鱼池;若单独开放B管,90分钟可注满鱼池;若单独开放C管(?时间)可将鱼池排完;如果三管同时开放,多长时间可以注满鱼池?
(缺少条件)
3.解:设该户存入本金x元。
2.25%x×(1-20%)+x=450
x=442
答:该户存入本金442元。
4.一城市现有42万人口,预计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,解:设这个城市现在城镇人口为x万人,则现在农村人数为(42-x)万人。
0.8%x+1.1%(42-x)=42×1%
x=14
42-x=42-14=28
14×(1+0.8%)=14×1.008=14.112(万人)
28×(1+1.1%)=28×1.011=28.308(万人)
答:这个城市的一年后城镇人口为14.112万人,农村人数为28.308万人。
初一的数学应用题
第一题,先求两人相遇所用的时间22.5÷
(2.5+5)=3h,
小狗跑的时间等于相遇时间,
则7.5X3=22.5千米
第二题,先进行单位换算,250米/分钟=15千米/时,200米/分钟=12千米/时
相遇时间=路程÷
速度之和=54÷
(15+12)=2小时