什么是中国四大骨干网?
中国公用计算机互联网(CHINANET),中国教育与科研网(CERNET),中国科学技术网(CSTNET),中国金桥信息网(CHINAGBN),合起来称为中国四大骨干网。
中国公用计算机互联网(CHINANET)又称邮电部互联网、中国公用Internet网,是邮电部经营管理的基于Internet网络技术的电子信息网,1995年初与国际互联网连通,并于5月向社会提供服务。CHINANET由骨干网、接入网组成,骨干网是其主要信息通路,由直辖市和各省会城市的网络节点构成;接入网是各省(区)建设的网络接点形成的网络。CHINANET的灵活接入方式和遍布全国各城市的接入点,可以方便地接入国际Internet, 享用Internet上的丰富信息资源和各种服务,并可为国内的计算机互联,为国内的信息资源共享提供方便的网络环境。
☆中国教育与科研网(CERNET)1994年启动,1995年底完成首期工程,包括北京(网络中心)、上海、南京、广州、武汉、西安、成都和沈阳等高等学校集中的大城市。有连接美国的国际专线。全国主干网(共11条64Kbps DDN专线)于1995年10月开通。二期工程完成后,全国主干网和国际联网的逐步升级,主干网达到2Kbps以上,国际联网达到8Kbps以上。
☆中国科学技术网(CSTNET)由中国科学院主持,联合清华、北大共同建设。1994年4月开通了与Internet的专线连接。1994年5月21日完成了我国最高域名CN主服务器的设置,实现了与Internet的TCP/IP连接。1995年底基本完成“百所联网”工程。至1997年底,已连接100多个以太网、3000多台计算机、1万多名用户,成为中国地域广、用量大、性能好、通信量大、服务设施齐全的全国性科研教育网络。
☆中国金桥信息网(CHINAGBN)即国家公用经济信息通信网,由原电子工业部管理,面向政府、企业、事业单位和社会公众提供数据通信和信息服务。金桥网年底与Internet连通,已开通24个城市,发展了1000多个本地和远程仿真终端,提供全面的Internet服务。
IP骨干网,什么是IP骨干网
骨干网(Backbone Network)又被称为核心网络,它由所有用户共享,负责传输骨干数据。
每个骨干网中至少有一个和其他骨干网进行互联互通的连接点。不同的网络供应商都拥有自己的骨干网,用以连接其位于不同区域的网络。
骨干网通常是基于光纤的,能够实现大范围(在城市之间和国家之间)的数据传送。这些网络通常采用高速传输网络(如SONET/SDH)传输数据,高速交换设备(如ATM和基于IP的交换)提供网络路由。
骨干网的发展
SONET(同步光纤网络)在许多方面的重要价值,使它成为长距离、高速度光纤通信的最主要协议。首先,SONET的可伸缩性使它成为实现新一轮高速端口的首要技术。因为OC-3 (155Mbps)已成为一种过时的辅助技术,在高速的路由器和交换机上OC-48 (2.4Gbps)端口速度已经非常普遍,OC-768 (40Gbps)的端口速度也即将闪亮登场,随着数据流量吞吐率不断增长,SONET成为一种重要的骨干网络传输技术。 骨干网大量使用SFP可热插拔的光模块,光模块使用高速率,长距离解决升级和实际运用问题,深圳威盛康主要提供155M~10G光模块,封装含1*9、SFP、SFF、XFP、SFP+、X2、XENPARK等光模块。
在SONET出现之前,每个光纤设备制造商各自为政,在产品生产中采用自己独立的技术,产品互不兼容。SONET的出现起到了标准化高速光纤数据传输的作用。 ATM为语音、视频和数据创建了一个单一的网络,并且语音和视频流能够维持在用户所要求的较低的时延和抖动水平上。同时,对时间不敏感的数据能够充分利用剩余的信道容量,这样可以相对降低为提供服务质量保证的费用。
正像SONET有许多特征没有包含在传统的物理层协议的定义中一样,ATM也不能完全被当作数据链路层协议。尽管一个ATM信元与典型的第二层数据帧很相似,都具有错误修正能力,也都包含有对本地数据链接非常重要的地址信息,但是,第二层的规程并不要求像ATM那样,把全部的通信流都转换成固定长度的信元。
ATM有精心制作的服务质量QoS,没有数据链路层所要求的兼容性。然而,ATM作为与物理层的接口,无疑又非常适合第二层协议的定义。它对第一层的选项包括了许多运送ATM信元的光纤传输方法,包括SONET、第五类双绞线铜缆和T1线等。
虽然ATM也能被当作统计多路复用器来为大量非实时的数据流提供服务,但它的主要优势还在于能够接收实时数据流(例如语音和视频)而不造成抖动和时延。 在网络层上,随着Internet取得的巨大成功,IP已经成为了公认的标准。IP随着技术的发展和承载业务的多元化,IP这种以“尽力传送”的方式来传输数据的无连接协议,需要为业务提供服务质量保证(QoS),否则无法达到骨干网所需要的电信级的服务质量。
从网络层次上看
这样,在网络层次上,由物理层、数据链路层和网络层组成的骨干网形成了IP/ATM/SONET/Optical的体系结构。但是,SONET的APS设备带来了额外的“容错税”,为了实现容错在SONET中需要花费整个带宽的50%作为“容错税”。因此,许多电信运营商想要去掉这一层。
IP/ATM/SONET/Optical体系结构的缺点随着应用的深入逐渐暴露了出来:效率低、设备复杂、成本高昂、管理复杂等。随着吉位路由交换机包转发速度增加到数十兆的速率以及拥有了155Mbps和622Mbps的SONET端口,Internet骨干网于是采用了以PPP协议连接路由器的方式构成,这就是IP over SONET(POS)的结构。这种结构很快取代ATM成为Internet骨干网技术的主流,它将传输效率从不到80%提高到95%以上,并且使设备简化、成本降低。
IP over SONET并不是分层简化的终极体系,在骨干网络中还能进一步简化掉SONET层,把IP应用直接运行在光通道上(IP over Optical)。全光网络不需要SONET层复杂的链路层管理,Internet固有的分布式生存特性使其具有保护和自愈能力。在IP优化光网络中不使用SDH和ATM,数据包的转发交换是由吉位路由交换机完成的。由于在IP优化光网络中没有更低层的传输协议可以使用,自愈恢复最好是在网络层完成。可以使用MPLS(多协议标记交换)或者DPT(动态包传输)实现网络层上的自愈恢复,使整个网络保持健壮性和高效性。 新一代的宽带IP骨干网络,已不再是传统意义上的Internet,它需要在其骨干上运行更多的业务。新的骨干网络结构必须能够提供包括语音、数据、视频等多种服务。因此,就要求有一定的服务质量(QoS),这个服务质量是指要求在时间延迟和传输误码率两方面要得到高质量的保证。在网络中就必须能够提供业务流控制的手段和流量管理的方法。
对于宽带骨干网来说,追求最大限度地利用资源、降低成本、提高效率是网络建设、网络运营的根本要求。所以在网络的高层需要选择高效的组网技术,充分发挥物理资源。流量管理技术能够在发生拥塞的网络中,保证各个业务的服务质量。
IETF从综合服务工程组中成立了一个新的工作组来创建区别服务(DiffServ),以实现骨干网络中的QoS功能。在IP网络中为流量区分优先级的另一个有效机制是TCP速率控制,它通过调节终端窗口的大小而不是让其任意增长的方式来实现,TCP速率控制能够减轻网络上的包流量。
IP骨干网络管理上的重要问题是如何监视流量,并防止和化解拥塞。为了适应IP over ATM的发展,出现了多协议标记交换技术MPLS。MPLS可在ATM交换机中根据标记,为IP实时业务数据流建立虚电路,保证QoS。
未来的宽带骨干网将担当起三网统一的任务,为多种业务提供支撑的平台。网络首先要有很高的效率,使网络层次更加简明,从而得到高的传输效率;另外,需要在网络层或者更高的应用层次上下工夫,把服务质量、流量监控和网络管理的功能提高到一个更高的境界。
电信互联网骨干网是什么啊?
互联网骨干网(Internet Backbone Provider,IBP),主要指国家级互联网业务提供商(Internet
Service Provider, ISP),即在全国范围内拥有骨干网的互联网服务提供商,包括第一级骨干网(Tier1
ISP)和第二级骨干网(Tier2 ISP)。
这些骨干网是国家批准的可以直接和国外连接的互联网。其他有接入功能的ISP想连到国外都得通过骨干网。“骨干网”通常是用于描述大型网络结构时经常使用的词语。骨干网一般都是广域网:作用范围几十到几千公里。
因特网实际上是相互连接在一起形成网状的许多骨干网。“骨干网”一词源自NSFNET,这是一种用于早期研究的网络,该网络由美国国家科学基金会出
资兴建。它创建了至今仍在使用的分层结构模型。这种模型中,本地服务提供商连接到区域服务,而后者又依次连接到全国或全球的服务提供商。目前,已有许多骨
干网相互连接在一起,这就使得任何两台主机之间都可通信。此外,许多区域性的网络避开了骨干网而直接彼此相连。
因特网的网络由大量独立的服务提供商(比如MCI Worldcom、Sprint、Earthlink、Cable and
Wireless等)管理。其中包括NSP(网络服务提供商)、ISP(因特网服务提供商)和交换点。NSP构建全国或全球性的网络并向区域性的NSP出
售带宽。区域性的NSP接着向本地ISP转售带宽。而本地ISP则向终端用户提供服务方面的销售与管理。
国际通用互联方式相互联接和交换信息的方式,称为互联网网间互联方式。按照互联双方交换信息的方式不同,互联网网间互联方式可分为两种:一是对等互联(Peering),二是不对称互联(Transit)。
互联双方支付费用的规则或方法,称为网间互联结算模式。互联网网间互联结算模式大致有两种:一是免费结算模式,即“呼叫者保留全部收入”
(SenderKeepsAll,SKA)或“开票但不收费”(Bill and Keep) ;二是付费结算模式(Settlement)。
互联网上大部分流量都在用户和网站之间传输。大体来说,从用户到网站的流量相对很小(即要求网站传输内容的请求),而从网站到用户的流量却很大(网
站提供的内容)。这就意味着,在很多情况下流量交换的发起者只用了总流量的很小部分,而网站只是提供服务却是大部分流量的来源。互联网运营商并不能提供一
个统一的信息服务,网络传递信息的基本单位是所谓的分组(packet),运营商从其所传送的分组中并不能准确分辨谁是受益方,因此无法确定所传送数据的
价值,也就不能满足采用传统电信网结算体系的先决条件。另外,互联网上的大部分应用都是不对称的。例如,一个简单的文件传输请求可能在反方向上产生大量的
通信量。这种不对称的通信方式也为网间结算带来了困难。再有,与电话服务不同,互联网的路由是动态的,传输路径可能经由不同的网络,网络本身在分组到达之
前,并不知道有这个通信需求,因此计费也就无从着手,因此互联网并不适合采用传统的电信网结算模式。
1.对等互联(Peering)
根据SKA协议,对等互联双方无需结算。对等互联存在的前提就是互联对双方的利益相当,能省去繁琐的流量纪录,节省成本。对等互联双方须满足一定的
对等互联条件,衡量网络规模需要考察诸如地理覆盖范围、容量、业务流量及用户数量等。双方在利益均衡的基础上达成对等互联协议,是完全互惠互利的商业行
为。
对等互联还可根据物理连接方式的不同进一步分为两种形式,一是公共对等互联(PublicPeering);二是专用对等互联
(PrivatePeering)。前者指多个网络间的对等互联关系,各骨干网经营者签署并遵守多边协议。这种互联方式一般发生在公共交换点。后者则是指
两个网络间的对等互联关系,两个骨干网经营者间签署并遵守双边协议。这种互联方式既可以在公共交换点上进行,也可以是两个经营者通过自己的电路直接相联来
实现。
2.不对称互联(Transit)
在此模式下,一个骨干网为了进行互联向另一个骨干网付费,双方实力相差悬殊,一方面小ISP不能也不需要建立全网状网连接,另一方面大ISP有足够
多的路由来满足小ISP的需求,常见于上级ISP与下级ISP之间和国外互联网与国内互联网之间的互联。提供服务的一方有义务向另一方开放全部路由,即业
务是完全穿透的,可以透过转接方进入其它骨干网。这是一种典型的“提供者—用户”的商务关系,用户(通常是较小的网络运营商)通过向提供者(通常是较大网
络运营商)支付转接互联费以购买业务,实现对其它互联网的访问。
3.部分对等互联(PartialPeering)
部分对等互联是指一方ISP只用自己的部分网络与另一方ISP建立对等互联,双方只需在开放路由的地理位置区域具有相当的网络规模和实力即可。适用
于一方ISP已经在其它地区建立了连接的情况下又需要在特定区域再建立连接的情况,常存在于第二级骨干网之间或第二级与第一级骨干网之间,应用比较灵活。
这种方式在南美和欧洲比较盛行。
4.付费对等互联(PaidPeering)
由于欧洲有很多不同类型的ISP,所以常采用有结算的对等互联方式,即双边付费结算模式(BilateralSettlement)。这种模式在结
算上对于物理连接成本采用共同承担的方式,但对于两网之间的流量差需要通过协议进行测算,同时给予定价,由一方按流量差支付给另一方相应费用。互联双方是
准“提供商—用户”关系,网络之间互为客户关系。付费对等互联的结算模式多参照不对称互联的结算模式,两个ISP之间的费率取决于双方的规模(衡量的标准
包括用户数、流量、骨干网容量、地理覆盖范围和内容网站的数量等等),费率比不对称互联方式的费率低,互联费主要用于对大网进行成本补偿(而非形成大网的
高额利润)。
5.部分不对称互联(PartialTransit)
部分不对称互联指的是提供不对称互联的ISP只对去往特定方向的流量进行转接,这种连接方式主要应用于南美。其费率的制定也遵从于普通不对称互联的
模式。适用于建立互联的双方在网络规模、流量等方面有很大的差距,提供服务的ISP并不开放所有的路由或者接受服务的ISP已经建立了一些连接而只需要部
分特殊转接的情况,ISP可以自由选择适合自己的路由结构。
互联网骨干网互联互通模式总结
在因特网中,互联网骨干网之间的互联互通有多种模式,我们可以按四种不同的维度来加以区别:
(1)按照物理连接方式的不同可分为直接互联和通过交换中心互联;
(2)按照互联双方交换信息的方式不同可分为不穿透互联和穿透互联;
(3)按照结算模式的不同可分为付费互联和免结算互联;
(4)根据路由开放程度的不同可分为一方对另一方开放部分路由的互联和一方对另一方开放所有路由的互联。
核心网和骨干网有关系吗?可以简单解释下核心网吗?
首先,骨干网这个概念存在于很多张往里面,比如IP城域网、IP承载网等,所谓的骨干网就是位于网络结构上层的核心网元设备连接组成的一张网。
其次,针对此问题,我猜测应该楼主想问的是核心网与承载网的骨干网之间的关系。每个地市(地市:市级城市)基本都有自己的本地核心网交换机房,完成本地及外地的话务转接、数据传送。如果要与外地发生交换业务,那么就需要依靠一张可靠的传输网络来完成这项任务,所以,这张可靠的网络提供一个“接口”(实际上是设备),我们就可以将核心网中处于边界的网元设备连接到那张可靠的传输网络的“接口”上,这个接口在往上走就进入了骨干网完成传输任务。简单的说,承载网是国家电网,核心网是各电站的网络,要完成各电站的统筹规划就要接入国家电网。
最后,附上核心网专业的范围图。
欢迎各位指正。
请问中国国家骨干网是什么?据说还有9大节点城市,是哪九个城市呢?
简单来说,就是一条信息的高速公路,全国的所有信息数据,最终都会通过节点城市,汇聚到这样的高速公路上来。
目前全国一共有4条骨干线路:
1、中国科技网(CSTNET)
中国科技网实在中关村地区教育与科研示范网(NCFC)和中国科学院网(CASnet)的基础上,建设和发展起来的覆盖全国范围的大型计算机网络,是我国最早建设并获得国家正式承认具有国际出口的中国四大互联网络之一。中国科技网的服务主要包括网络通信服务,信息资源服务,超级计算服务和域名注册服务。中国科技网拥有科学数据库,科技成果,科技管理,技术资料和文献情报等特有的科技信息资源,向国内外用户特工各种科技信息服务。中国科技网的网络中心还受国务院的委托,管理中国互联网信息中心(CNNIC),负责提供中国顶级域"CN"的注册服务。
2、中国教育和科研计算机网(CERNET)
CERNET是中国第一个覆盖全国的、由国内科技人员自行设计和建设的国家级大型计算机网络。该网络由教育部主管;由清华大学、北京大学、上海交通大学、西安交通大学、东南大学、华中理工大学、华南理工大学、北京邮电大学、东北大学和电子科技大学等十所高校承担建设,于1995年11月建成。全国网络中心设在清华大学,八个地区网点分别设立在北京、上海、南京、西安、广州、武汉、成都、和沈阳。CERNET是为教育、科研和国际学术交流服务的非盈利性网络。
3、中国公用计算机互联网(CHINANET)
中国公用计算机互联网(简称"中国互联网"),是1995年11月邮电部委托美国信亚有限公司和中讯亚信公司承建的国家级网络,并于1996年6月在全国正式开通。中国邮电部数据通信局是CHINANET直接的经营管理者。CHINANET是基于Internet网络技术的中国公用Internet网,是中国具有经营权的Internet国际信息出口的互联单位,也是CNNIC最重要的成员之一。CHINANET不同于CSTNET和CERNET,它是面向社会公开开放的、服务于社会公众的大规模的网络基础设施和信息资源的集合,它的基本建设就是要保证可靠的内联外通,即保证大范围的国内用户之间的高质量的互通,进而保证国内用户与国际Internet的高质量互通。
4、国家公用经济信息通信网(CHINAGBN)
金桥网以光纤、卫星、微波、无线移动等多种传播方式,形成天、地一体的网络结构,它和传统的数据网、话音网和图象网相结合并与Internet相连。根据计划,金桥网将建立一个覆盖全国,与国内其他专用网络相联接,并与30几个省市自治区,500个中心城市,12000个大型企业,100个重要企业集团相联接的国家公用经济信息通信网。
至于楼主说的9大节点城市,应该是指的CHINANET上的节点,分别是:
成都、南京、西安、武汉、沈阳、广州、上海、北京、杭州
其中具备国际出口的城市:
北京、上海、广州、成都