非对称加密(非对称加密的优点和缺点)

更新时间:2023-02-28 19:13:13 阅读: 评论:0

非对称加密算法有哪些

RSA、Elgamal、背包算法、Rabin、D-H、ECC椭圆曲线加密算法。
非对称加密(公钥加密):指加密和解密使用不同密钥的加密算法,也称为公私钥加密。假设两个用户要加密交换数据,双方交换公钥,使用时一方用对方的公钥加密,另一方即可用自己的私钥解密。如果企业中有n个用户,企业需要生成n对密钥,并分发n个公钥。假设A用B的公钥加密消息,用A的私钥签名,B接到消息后,首先用A的公钥验证签名,确认后用自己的私钥解密消息。由于公钥是可以公开的,用户只要保管好自己的私钥即可,因此加密密钥的分发将变得十分简单。同时,由于每个用户的私钥是唯一的,其他用户除了可以通过信息发送者的公钥来验证信息的来源是否真实,还可以通过数字签名确保发送者无法否认曾发送过该信息。

非对称加密算法的优点有哪些?

非对称加密算法的优点如下:安全性高。

非对称密码体制的特点:算法强度复杂、安全性依赖于算法与密钥但是由于其算法复杂,而使得加密解密速度没有对称加密解密的速度快。

对称密码体制中只有一种密钥,并且是非公开的,如果要解密就得让对方知道密钥。所以保证其安全性就是保证密钥的安全,而非对称密钥体制有两种密钥,其中一个是公开的,这样就可以不需要像对称密码那样传输对方的密钥了。这样安全性就大了很多。

扩展资料:

主要应用:

非对称加密(公钥加密):指加密和解密使用不同密钥的加密算法,也称为公私钥加密。假设两个用户要加密交换数据,双方交换公钥,使用时一方用对方的公钥加密,另一方即可用自己的私钥解密。如果企业中有n个用户,企业需要生成n对密钥,并分发n个公钥。

假设A用B的公钥加密消息,用A的私钥签名,B接到消息后,首先用A的公钥验证签名,确认后用自己的私钥解密消息。由于公钥是可以公开的,用户只要保管好自己的私钥即可,因此加密密钥的分发将变得 十分简单。

参考资料来源:百度百科-非对称加密算法




加密那些事--非对称加密详解

“非对称加密也叫公钥密码:使用公钥 加密 ,使用私钥解密”

在对称密码中,由于加密和解密的密钥是相同的,因此必须向接收者配送密钥。用于解密的密钥必须被配送给接收者,这一问题称为密钥配送问题。如果使用非对称加密,则无需向接收者配送用于解密的密钥,这样就解决了密钥配送的问题。

 非对称加密中,密钥分为加密密钥和解密密钥两种。发送者用加密密钥对消息进行加密,接收者用解密密钥对密文进行解密。需理解公钥密码,清楚地分加密密钥和解密密钥是非常重要的。加密密钥是发送者加密时使用的,而解密密钥则是接收者解密时使用的。

加密密钥和解密密钥的区别:

a.发送者只需要加密密钥

b.接收者只需要解密密钥

c.解密密钥不可以被窃听者获取

d.加密密钥被窃听者获取也没关系

也就是说,解密密钥从一开始就是由接收者自己保管的,因此只要将加密密钥发给发送者就可以解决密钥配送问题了,而根本不需要配送解密密钥。

非对称加密中,加密密钥一般是公开的。真是由于加密密钥可以任意公开,因此该密钥被称为公钥(pulickey)。相对地解密密钥是绝对不能公开的,这个密钥只能由你自己来使用,因此称为私钥(privatekey)****。私钥不可以被别人知道,也不可以将它发送给别人。

公钥和私钥是"一一对应的",一对公钥和私钥统称为密钥对(keypair)。由公钥进行加密的密文,必须使用与该公钥配对的私钥才能解密。密钥对中的两个密钥之间具有非常密切的的关系(数学上的关系)。因此公钥和私钥不能分别单独生成。

非对称加密通讯流程

假设A要给B发一条信息,A是发送者,B是接收者,窃听者C可以窃听他们之间的通讯内容。

1.B生成一个包含公钥和私钥的密钥对  

私钥由B自行妥善保管

2.B将自己的公钥发送给A

B的公钥被C截获也没关系。将公钥发给A,表示B请A用这个公钥对消息进行加密并发送给他。

3.A用B的公钥对消息进行加密

加密后的消息只有B的私钥才能够解密。

虽然A拥有B的公钥,但用B的公钥是无法对密文进行解密的。

4.A将密文发送给B   

密文被C截获也没关系,C可能拥有B的公钥,但是B的公钥是无法进行解密的。

5.B用自己的私钥对密文进行解密。

参考下图

RSA是一种非对称加密算法,它的名字由三位开发者。即RonRivest、AdiShamir和LeonardAdleman 的姓氏的首字母组成的(Rivest-Shamir-Leonard)

RSA的加密工程可以用下来公式来表达,如下。

也就是说,RSA的密文是对代表明文的数字的E次方求modN的结果。换句话说,就是将明文自己做E次乘法,然后将其结果除以N求余数,这个余数就是密文。

RSA的加密是求明文的E次方modN,因此只要知道E和N这两个数,任何人都可以完成加密的运算。所以说E和N是RSA加密的密钥。也就是说E和N的组合就是公钥

有一个很容易引起误解的地方需要大家注意一一E和N这两个数并不是密钥对(公钥和私钥的密钥对)。E和N两个数才组成了一个公钥,因此我们一般会写成 “公钥是(E,N)” 或者 “公钥是{E, N}" 这样的形式,将E和N用括号括起来。

1.3.2 RSA解密

RSA的解密和加密一样简单,可以用下面的公式来表达:

也就是说,对表示密文的数字的D次方求modN就可以得到明文。换句话说,将密文自己做D次乘法,在对其结果除以N求余数,就可以得到明文 。

这里所使用的数字N和加密时使用的数字N是相同的。数D和数N组合起来就是RSA的解密密钥,因此D和N的组合就是私钥。只有知道D和N两个数的人才能够完成解密的运算。

大家应该已经注意到,在RSA中,加密和解密的形式是相同的。加密是求 "E次方的mod N”,而解密则是求 "D次方的modN”,这真是太美妙了。

当然,D也并不是随便什么数都可以的,作为解密密钥的D,和数字E有着相当紧密的联系。否则,用E加密的结果可以用D来解密这样的机制是无法实现的。

顺便说一句, D是解密〈Decryption)的首字母,N是数字(Number)的首字母 。

RSA加密和解密

声明该文章仅做个人学习使用,无任何商业用途。

原文链接:https://blog.csdn.net/atlansi/article/details/111144109

简要说说对称加密和非对称加密的原理以及区别是什么

对称加密的原理是数据发送方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。接收方收到密文后,若想解读原文,则需要使用加密密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。

非对称加密的原理是甲方首先生成一对密钥同时将其中的一把作为公开密钥;得到公开密钥的乙方再使用该密钥对需要加密的信息进行加密后再发送给甲方;甲方再使用另一把对应的私有密钥对加密后的信息进行解密,这样就实现了机密数据传输。

对称加密和非对称加密的区别为:密钥不同、安全性不同、数字签名不同。

一、密钥不同

1、对称加密:对称加密加密和解密使用同一个密钥。

2、非对称加密:非对称加密加密和解密所使用的不是同一个密钥,需要两个密钥来进行加密和解密。

二、安全性不同

1、对称加密:对称加密如果用于通过网络传输加密文件,那么不管使用任何方法将密钥告诉对方,都有可能被窃听。

2、非对称加密:非对称加密因为它包含有两个密钥,且仅有其中的“公钥”是可以被公开的,接收方只需要使用自己已持有的私钥进行解密,这样就可以很好的避免密钥在传输过程中产生的安全问题。

三、数字签名不同

1、对称加密:对称加密不可以用于数字签名和数字鉴别。

2、非对称加密:非对称加密可以用于数字签名和数字鉴别。


密码学基础(三):非对称加密(RSA算法原理)

加密和解密使用的是两个不同的秘钥,这种算法叫做非对称加密。非对称加密又称为公钥加密,RSA只是公钥加密的一种。

现实生活中有签名,互联网中也存在签名。签名的作用有两个,一个是身份验证,一个是数据完整性验证。数字签名通过摘要算法来确保接收到的数据没有被篡改,再通过签名者的私钥加密,只能使用对应的公钥解密,以此来保证身份的一致性。

数字证书是将个人信息和数字签名放到一起,经由CA机构的私钥加密之后生成。当然,不经过CA机构,由自己完成签名的证书称为自签名证书。CA机构作为互联网密码体系中的基础机构,拥有相当高级的安全防范能力,所有的证书体系中的基本假设或者前提就是CA机构的私钥不被窃取,一旦 CA J机构出事,整个信息链将不再安全。

CA证书的生成过程如下:

证书参与信息传递完成加密和解密的过程如下:

互质关系:互质是公约数只有1的两个整数,1和1互质,13和13就不互质了。
欧拉函数:表示任意给定正整数 n,在小于等于n的正整数之中,有多少个与 n 构成互质关系,其表达式为:

其中,若P为质数,则其表达式可以简写为:

情况一:φ(1)=1
1和任何数都互质,所以φ(1)=1;

情况二:n 是质数, φ(n)=n-1
因为 n 是质数,所以和小于自己的所有数都是互质关系,所以φ(n)=n-1;

情况三:如果 n 是质数的某一个次方,即 n = p^k ( p 为质数,k 为大于等于1的整数),则φ(n)=(p-1)p^(k-1)
因为 p 为质数,所以除了 p 的倍数之外,小于 n 的所有数都是 n 的质数;

情况四:如果 n 可以分解成两个互质的整数之积,n = p1 × p2,则φ(n) = φ(p1p2) = φ(p1)φ(p2)

情况五:基于情况四,如果 p1 和 p2 都是质数,且 n=p1 × p2,则φ(n) = φ(p1p2) = φ(p1)φ(p2)=(p1-1)(p2-1)

而 RSA 算法的基本原理就是欧拉函数中的第五种情况,即: φ(n)=(p1-1)(p2-1);

如果两个正整数 a 和 n 互质,那么一定可以找到整数 b,使得 ab-1 被 n 整除,或者说ab被n除的余数是1。这时,b就叫做a的“模反元素”。欧拉定理可以用来证明模反元素必然存在。

可以看到,a的 φ(n)-1 次方,就是a对模数n的模反元素。

n=p x q = 3233,3233写成二进制是110010100001,一共有12位,所以这个密钥就是12位。

在实际使用中,一般场景下选择1024位长度的数字,更高安全要求的场景下,选择2048位的数字,这里作为演示,选取p=61和q=53;

因为n、p、q都为质数,所以φ(n) = (p-1)(q-1)=60×52= 3120

注意,这里是和φ(n) 互互质而不是n!假设选择的值是17,即 e=17;

模反元素就是指有一个整数 d,可以使得 ed 被 φ(n) 除的余数为1。表示为:(ed-1)=φ(n) y --> 17d=3120y+1,算出一组解为(2753,15),即 d=2753,y=-15,也就是(17 2753-1)/3120=15。

注意,这里不能选择3119,否则公私钥相同??

公钥:(n,e)=(3233,2753)
私钥:(n,d)=(3233,17)

公钥是公开的,也就是说m=p*q=3233是公开的,那么怎么求e被?e是通过模反函数求得,17d=3120y+1,e是公开的等于17,这时候想要求d就要知道3120,也就是φ(n),也就是φ(3233),说白了,3233是公开的,你能对3233进行因数分解,你就能知道d,也就能破解私钥。

正常情况下,3233我们可以因数分解为61*53,但是对于很大的数字,人类只能通过枚举的方法来因数分解,所以RSA安全性的本质就是:对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。

人类已经分解的最大整数是:

这个人类已经分解的最大整数为232个十进制位,768个二进制位,比它更大的因数分解,还没有被报道过,因此目前被破解的最长RSA密钥就是768位。所以实际使用中的1024位秘钥基本安全,2048位秘钥绝对安全。

网上有个段子:

已经得出公私钥的组成:
公钥:(n,e)=(3233,2753)
私钥:(n,d)=(3233,17)
加密的过程就是

解密过程如下:

其中 m 是要被加密的数字,c 是加密之后输出的结果,且 m < n ,其中解密过程一定成立可以证明的,这里省略证明过程。

总而言之,RSA的加密就是使用模反函数对数字进行加密和求解过程,在实际使用中因为 m < n必须成立,所以就有两种加密方法:

对称加密存在虽然快速,但是存在致命的缺点就是秘钥需要传递。非对称加密虽然不需要传递秘钥就可以完成加密和解密,但是其致命缺点是速度不够快,不能用于高频率,高容量的加密场景。所以才有了两者的互补关系,在传递对称加密的秘钥时采用非对称加密,完成秘钥传送之后采用对称加密,如此就可以完美互补。


非对称加密算法

如果要给世界上所有算法按重要程度排个序,那我觉得“公钥加密算法”一定是排在最前边的,因为它是现代计算机通信安全的基石,保证了加密数据的安全。

01 对称加密算法

在非对称加密出现以前,普遍使用的是对称加密算法。所谓对称加密,就是加密和解密是相反的操作,对数据进行解密,只要按加密的方式反向操作一遍就可以获得对应的原始数据了,举一个简单的例子,如果要对字符串"abc"进行加密,先获取它们的ANSCII码为:97 98 99;密钥为+2,加密后的数据就是:99 100 101,将密文数据发送出去。接收方收到数据后对数据进行解密,每个数据减2,就得到了原文。当然这只是一个非常简单的例子,真实的对称加密算法会做得非常复杂,但这已经能够说明问题了。

这样的加密方法有什么缺点呢?首先缺点一:密钥传递困难;想想看如果两个人,分别是Bob和Alice,Bob要给Alice发消息,那Bob就要把密钥通过某种方式告诉Alice,有什么可靠的途径呢?打电话、发邮件、写信...等等方式好像都不靠谱,都有被窃取的风险,也只有两人见面后当面交流这一种方式了;缺点二:密钥数量会随着通信人数的增加而急剧增加,密钥管理将会是一个非常困难的事情。

02 非对称加密算法

1976年,两位美国计算机学家,提出了Diffie-Hellman密钥交换算法。这个算法的提出了一种崭新的构思,可以在不直接传递密钥的情况下,完成解密。这个算法启发了其他科学家,让人们认识到,加密和解密可以使用不同的规则,只要这两种规则之间存在某种对应的关系即可,这样就避免了直接传递密钥。这种新的加密模式就是“非对称加密算法”。

算法大致过程是这样的:

(1)乙方 生成两把密钥(公钥和私钥)。公钥是公开的,任何人都可以获得,私钥则是保密的。

(2)甲方获取乙方的公钥,然后用它对信息加密。

(3)乙方得到加密后的信息,用私钥解密。

如果公钥加密的信息只有私钥解得开,那么只要私钥不泄漏,通信就是安全的。

03 RSA非对称加密算法

1977年,三位数学家Rivest、Shamir 和 Adleman 设计了一种算法,可以实现非对称加密。这种算法用他们三个人的名字命名,叫做RSA算法。

从那时直到现在,RSA算法一直是最广为使用的"非对称加密算法"。毫不夸张地说,只要有计算机网络的地方,就有RSA算法。这种算法非常可靠,密钥越长,它就越难破解。根据已经披露的文献,目前被破解的最长RSA密钥是768个二进制位。也就是说,长度超过768位的密钥,还无法破解(至少没人公开宣布)。因此可以认为,1024位的RSA密钥基本安全,2048位的密钥极其安全。

公钥加密 -> 私钥解密

只有私钥持有方可以正确解密,保证通信安全

私钥加密 -> 公钥解密

所有人都可以正确解密,信息一定是公钥所对应的私钥持有者发出的,可以做签名

04 质数的前置知识

RSA的安全性是由大数的质因数分解保证的。下面是一些质数的性质:

1、任意两个质数构成素质关系,比如:11和17;

2、一个数是质数,另一个数只要不是前者的倍数,两者就构成素质关系,比如3和10;

3、如果两个数之中,较大的那个是质数,则两者构成互质关系,比如97和57;

4、1和任意一个自然数都是互质关系,比如1和99;

5、p是大于1的整数,则p和p-1构成互质关系,比如57和56;

6、p是大于1的奇数,则p和p-2构成互质关系,比如17和15

05 RSA密钥生成步骤

举个“栗子“,假如通信双方为Alice和Bob,Alice要怎么生成公钥和私钥呢?

St ep 1:随机选择两个不相等的质数p和q;

Alice选择了3和11。(实际情况中,选择的越大,就越难破解)

S tep 2 :计算p和q的乘积n;

n = 3*11 = 33,将33转化为二进制:100001,这个时候密钥长度就是6位。

Step 3 :计算n的欧拉函数φ(n);

因为n可以写为两个质数相乘的形式,欧拉函数对于可以写成两个质数形式有简单计算方式

φ(n) = (p-1)(q-1)

Step 4 :随机选择一个整数e,条件是1< e < φ(n),且e与φ(n) 互质;

爱丽丝就在1到20之间,随机选择了3

Step 5 :计算e对于φ(n)的模反元素d

所谓模反元素,就是指有一个整数d,可以使得ed被φ(n)除的余数为1

Step 6 :将n和e封装成公钥,n和d封装成私钥;

在上面的例子中,n=33,e=3,d=7,所以公钥就是 (33,3),私钥就是(33, 7)。

密钥生成步骤中,一共出现了六个数字,分别为:

素质的两个数p和q,乘积n,欧拉函数φ(n),随机质数e,模反元素d

这六个数字之中,公钥用到了两个(n和e),其余四个数字都是不公开的,可以删除。其中最关键的是d,因为n和d组成了私钥,一旦d泄漏,就等于私钥泄漏。

那么,有无可能在已知n和e的情况下,推导出d?

(1)ed 1 (mod φ(n))。只有知道e和φ(n),才能算出d。

(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。

(3)n=pq。只有将n因数分解,才能算出p和q。

结论是如果n可以被因数分解,d就可以算出,也就意味着私钥被破解。

BUT!

大整数的因数分解,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法。

维基百科这样写道:

"对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。

假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有较短的RSA密钥才可能被暴力破解。到现在为止,世界上还没有任何可靠的攻击RSA算法的方式。

只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。"

06 RSA加密和解密过程

1、加密要用公钥(n,e)

假设鲍勃要向爱丽丝发送加密信息m,他就要用爱丽丝的公钥 (n,e) 对m进行加密。

所谓"加密",就是算出下式的c:

爱丽丝的公钥是 (33, 3),鲍勃的m假设是5,那么可以算出下面的等式:

于是,c等于26,鲍勃就把26发给了爱丽丝。

2、解密要用私钥(n,d)

爱丽丝拿到鲍勃发来的26以后,就用自己的私钥(33, 7) 进行解密。下面的等式一定成立(至于为什么一定成立,证明过程比较复杂,略):

也就是说,c的d次方除以n的余数为m。现在,c等于26,私钥是(33, 7),那么,爱丽丝算出:

因此,爱丽丝知道了鲍勃加密前的原文就是5。

至此,加密和解密的整个过程全部完成。整个过程可以看到,加密和解密使用不用的密钥,且不用担心密钥传递过程中的泄密问题,这一点上与对称加密有很大的不同。由于非对称加密要进行的计算步骤复杂,所以通常情况下,是两种算法混合使用的。

07 一些其它的

在Part 5的第五步,要求一定要解出二元一次方程的一对正整数解,如果不存在正整数解,这该怎么办?

扩展欧几里得算法给出了解答:

对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by;

第五步其实等价于:ed - kφ(n) = 1, e与φ(n)又互质,形式上完全与扩展欧几里得算法的一致,所以一定有整数解存在。

Reference:

http://www.ruanyifeng.com/blog/2013/07/rsa_algorithm_part_two.html


本文发布于:2023-02-28 18:46:00,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/zhishi/a/167758279343682.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:非对称加密(非对称加密的优点和缺点).doc

本文 PDF 下载地址:非对称加密(非对称加密的优点和缺点).pdf

上一篇:志愿者精神
下一篇:返回列表
标签:非对称   优点   缺点
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 实用文体写作网旗下知识大全大全栏目是一个全百科类宝库! 优秀范文|法律文书|专利查询|