首页 > 作文

统计分析表

更新时间:2023-03-20 04:06:06 阅读: 评论:0

效率性-日落公园

统计分析表
2023年3月20日发(作者:射手座喜欢一个人的表现)

.

精品

16种常用的数据分析方法汇总

2015-11-10分类:数据分析评论(0)

经常会有朋友问到一个朋友,数据分析常用的分析方法有哪些,我需要学习哪个

等等之类的问题,今天数据分析精选给大家整理了十六种常用的数据分析方法,

供大家参考学习。

一、描述统计

描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋

势、离散趋势、偏度、峰度。

1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策

树法。

2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前

需要进行正态性检保留的意思 验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W

检验、动差法。

二、假设检验

1、参数检验

参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要

的参数(如均值、百分数、方差、相关系数等)进行的检验。

1)U验使用条件:当样本含量n较大时,样本值符合正态分布

2)T检验使用条件:当样本含量n较小时,样本值符合正态分布

A单样本t检验:推断该样本来自的总体均数与已知的某一总体均数0

(常为理论值或标准值)有无差别;

B配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两

者在可能会影响处理效果的各种条件方面扱为相似;

C两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。

2、非参数检验

非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总

体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检

验。

.

精品

适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。

A虽然是连续数据,但总体分布形态未知或者非正态;

B体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;

主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。

三、信度分析

检査测量的可信度,例如调查问卷的真实性。

分类:

1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度

2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致

性如何,常用方法分半信度。

四、列联表分析

用于分析离散变量或定型变量之间是否存在相关。

对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。

列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。

五、相关分析

研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及

相关程度。

1、单相关:两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和

一个因变量;

2、复相关:三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两

个以上的自变量和因变量相关;

3、偏相关:在某一现象与多种现象相关的场合,当假定其他变量不变时,其中

两个变量之间的相关关系称为偏相关。

六、方差分析

使用条件:各样本须是相互独立的随机样本;各样本来自正态分布总体;各总体

方差相等。

.

精品

分类

1、单因素方差分析:一项试验只有一个影响因素,或者存在多个影响因素时,

只分析一个因素与响应变量的关系

2、多因素有交互方差分析:一顼实验有多个影响因素,分析多个影响因素与响

应变量的通过的英语 关系,同时考虑多个影响因素之间的关系

3、多因素无交互方差分析:分析多个影响因素与响应变量的关系,但是影响因

素之机械能守恒公式 间没有影响关系或忽略影响关系

4、协方差分祈:传统的方差分析存在明显的弊端,无法控制分析中存在的某些

随机因素,使之影响了分祈结果的准确度。协方差分析主要是在排除了协变量的

影响后再对修正后的主效应进行方差分析,是将线性回归与方差分析结合起来的

一种分析方法,

七、回归分析

分类:

1、一元线性回归分析:只有一个自变量X与因变量Y有关,X与Y都必须是连

续型变量,因变量g姓 y或其残差必须服从正态分布。

2、多大括号符号 元线性回归分析

使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因

变量y或其残差必须服从正态分布。

1)变呈筛选方式:选择最优回归方程的变里筛选法包括全横型法(CP法)、逐

步回归法,向前引入法和向后剔除法

2)横型诊断方法:

A残差检验:观测值与估计值的差值要艰从正态分布

B强影响点判断:寻找方式一般分为标准误差法、Mahalanobis距离法

C共线性诊断:人人让座打一字

•诊断方式:容忍度、方差扩大因子法(又称膨胀系数VIF)、特征根判定法、条件指

针CI、方差比例

•处理方法:增加样本容量或选取另外的回归如主成分回归、岭回归等

3、Logistic回归分析

.

精品

线性回归模型要求因变量是连续的正态分布变里,且自变量和因变量呈线性关

系,而Logistic回归模型对因变量的分布没有要求,一般用于因变量是离散时

的情况

分类:

Logistic回归模型有条件与非条件之分,条件Logistic回归模型和非条件

Logistic回归模型的区别在于参数的估计是否用到了条件概率。

4、其他回归方法非线性回归、有序回归、Probit回归、加权回归等

八、聚类分析

样本个体或指标变量按其具有的特性进行分类,寻找合理的度量事物相似性的统

计量。

1、性质分类:

Q型聚类分析:对样本进行分类处理,又称样本聚类分祈使用距离系数作为统

计量衡量相似度,如欧式距离、极端距离、绝对距离等

R型聚类分析:对指标进行分类处理,又称指标聚类分析使用相似系数作为统

计量衡量相似度,相关系数、列联系数等

2、方法分类:

1)系统聚类法:适用于小样本的样本聚类或指标聚类,一般用系统聚类法来聚

类指标,又称分层聚类

2)逐步聚类法:适用于大样本的样本聚类

3)其他聚类法:两步聚类、K均值聚类等

九、判别分析

1、判别分析:根据已掌握的一批分类明确的样品建立判别函数,使产生错判的

事例最少,进而对给定的一个新样品,判断它来自哪个总体

2、与聚类分析区别

1)聚类分析可以对样本逬行分类,也可以对指标进行分类;而判别分析只能对

样本

2)聚类分析事先不知道事物的类别,也不知道分几类;而判别分析必须事先知

道事物的类别,也知道分几类

.

精品

3)聚类分析不需要分类的历史资料,而直接对样本霍启刚爷爷 进行分类;而判别分析需要

分类历史资料去建立判别函数,然后才能对样本进行分类

3、进行分类:

1)Fisher判别分析法:

以距离为判别准则来分类,即样本与哪个类的距离最短就分到哪一类,适用于

两类判别;

以概率为判别准则来分类,即样本属于哪一类的概率最大就分到哪一类,适用于

适用于多类判别。

2)BAYES判别分析法:

BAYES判别分析法比FISHER判别分析法更加完善和先进,它不仅能解决多类判

别分析,而且分析时考虑了数据的分布状态,所以一般较多使用;

十、主成分分析

将彼此梠关的一组指标变适转化为彼此独立的一组新的指标变量,并用其中较少

的几个新指标变量就能综合反应原多个指标变梦到被水淹 量中所包含的主要信息。

十一、因子分析

一种旨在寻找隐藏在多变量数据中、无法直接观察到却影响或支配可测变量的潜

在因子、并估计潜在因子对可测变量的影响程度以及潜在因子之间的相关性的一

种多元统计分析方法

与主成分分析比较:

相同:都能够起到済理多个原始变量内在结构关系的作用

不同:主成分分析重在综合原始变适的信息.而因子分析重在解释原始变量间的

关系,是比主成分分析更深入的一种多元统计方法

用途:

1)减少分析变量个数

2)通过对变量间相关关系探测,将原始变量进行分类

十二、时间序列分析

.

精品

动态数据处理的统计方法,研究随机数据序列所遵从的统计规律,以用于解决实

际问题;时间序列通常由4种要素组成:趋势、季节变动、循环波动和不规则波

动。

主要方法:移动平均滤波与指数平滑法、ARIMA横型、量ARIMA横型、ARIMAX

模型、向呈自回归横型、ARCH族模型

十三、生存分析

用来研究生存时间的分布规律以及生存时间和相关因索之间关系的一种统计分

析方法

1、包含内容:

1)描述生存过程,即研究生存时间的分布规律

2)比较生存过程,即研究两组或多组生存时间的分布规律,并进行比较

3)分析危险因素,即研究危险因素对生存过程的影响

4)建立数学模型,即将生存时间与相关危险因素的依存关系用一个数学式子表

示出来。

2、方法:

1)统计描述:包括求生存时间的分位数、中数生存期、平均数、生存函数的估

计、判断生存时间的图示法,不对所分析的数据作出任何统计推断结论

2)非参数检验:检验分组变量各水平所对应的生存曲线是否一致,对生存时间

的分布没有要求,并且检验危险因素对生存时间的影响。

A乘积极限法(PL法)

B寿命表法(LT法)

3)半参数横型回归分析:在特定的假设之下,建立生存时间随多个危险因素变

化的回归方程,这种方法的代表是Cox比例风险回归分析法

4)参数模型回归分析:已知生存时间服从特定的参数横型时,拟合相应的参数

模型,更准确地分析确定变量之间的变化规律

十四、典型相关分析

相关分析一般分析两个变里之间的关系,而典型相关分析是分析两组变里(如3

个学术能力指标与5个在校成绩表现指标)之间相关性的一种统计分析方法。

.

精品

典型相关分析的基本思想和主成分分析的基本思想相似,它将一组变量与另一组

变量之间单变量的多重线性相关性研究转化为对少数几对综合变量之间的简单

线性相关性的研究,并且这少数几对变量所包含的线性相关性的信息几乎覆盖了

原变量组所包含的全部相应信息。

十五、R0C分析

R0C曲线是根据一系列不同的二分类方式(分界值或决定阈).以真阳性率(灵敏

度)为纵坐标,假阳性率(1-特异度)为横坐标绘制的曲线

用途:

1、R0C曲线能很容易地査出任意界限值时的对疾病的识别能力

用途;

2、选择最佳的诊断界限值。R0C曲线越靠近左上角,试验的准确性就越高;

3、两种或两种以上不同诊断试验对疾病识别能力的番茄紫菜汤 比较,一股用R0C曲线下面

积反映诊断系统的准确性。

十六、其他分析方法

多重响应分析、距离分祈、项目分祈、对应分祈、决策树分析、神经网络、系统

方程、蒙特卡洛模拟等。

如有侵权请联系告知删除,感谢你们的配合!

本文发布于:2023-03-20 04:06:04,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/zuowen/e9c9c05316c82e8a3faaa8b0a516eab4.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:统计分析表.doc

本文 PDF 下载地址:统计分析表.pdf

标签:统计分析表
相关文章
留言与评论(共有 0 条评论)
   
验证码:
推荐文章
排行榜
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图