用户分层,是精细化运营的前提,读懂精细化运营必须先读懂用户分层。本文旨在对用户分层通用方法论进行总结归纳,尝试以维度为切入点解构用户分层三大模型,并以用户生命周期分层模型为例,勾勒出一张精细化运营的“作战地图”。
一、用户分层的目的
用户分层,主要目的是对用户人群进行细分,并通过针对性的运营策略,用更少的资源和成本挖掘更大用户价值:
1、分人群落地策略,提升业务转化
物以类聚,人以群分。不同人群的用户,自身需求和对产品的诉求各不相同。通过用户分层,可以将相同特征的用户进行聚类,从而根据不同人群的特点落地针对性的运营策略,从而更好地提升各个人群的业务转化率,这是用户分层的首要目的。
2、分人群调配资源,精细化控制成本
不同人群业务转化的目标和转化难易程度不同,承诺歌词则平台运营方在各个人群上投入的资源和成本自然也各不相同。通过用户分层,可以将有限的资源和预算,更加合理地投入到业务运营中去,更好地把控业务ROI。
二、用户分层与用户分群的区别
很多人将用户分层和用户分群混为一谈,但两者内在逻辑有着显著差异。
如图1所示,用户分群中的“用户群”,是并列或平行的逻辑关系,比如基于男女性别、省份地域、用户偏好等所做的人群划分;而用户分层中的“用户群”则多了一个层级的概念,不同人群之间有着递进或先后关联的逻辑关系,比如基于会员等级、生命周期阶段、转化漏斗层级所做的人群层级划分。
虽然人晚礼服设计群划分逻辑不同,但用户分层和用户分群是可以配合使用的,比如同一用户分层可拆分出多个用户分群,同一用户分群也可拆解出多个用户分层进行精细化运营,在此不做展开。
三、用户分层模型建构的四个步骤
用户分层无定法,需要基于业务模式和用户运营的实际需求来展开。而通常来说,用户分层的模型建构主要包括以下几个步骤:
明确业务需求——所有用户分层都是在特定业务场景下所做的用户细分,明确业务需求才能明确对应视角下的目标用户和业务目标,从而做到有的放矢。
用户聚类分析——用户聚类分析,帮助我们勾勒各个分层的用户画像,也帮助我们提炼用户分层所要选取的核心维度。
分层维度拆解——分层维度即业务所依赖的核心指标或链路,是支撑起用户分层模型的核心“骨架”。
分层模型构建——基于选定的业务维度,并结合用户聚类分析及测试验证的数据,最终找到关键性的数值和节点,从而构建起用户分层模型。
四、用户分层三大模型
用户分层模型构建的核心维度,可以是一个也可以是多个,但一般不会超过三个。基于此,我们可按分层维度的数量,将用户分层模型归纳为一维、二维、三维共三大类分层模型:
1、一维分层模型
一维用户分层,是最常见的用户分层模型,即乙醇的消去反应仅基于一个最核心的维度对用户进行划分。如图2所示,左图是基于用户平台价值维度,构建起的一个用户金字塔模型分层,从下到上用户价值依次递增;右图是基于用户交易链路,所构建的一个漏斗转化分层模型,从上到下用户一步步被转化为交易用户。结合热
一维分层模型中的用户,一般都会沿着核心业务维度的链路方向呈线性迁移状态,即用户的平台价值一般是逐步提升的。但部分模型下的用户,也会出现层级跨越的情况,比如上图金字塔模型中,通常存在一些注册7天内的用户直接完成付费而跃迁到最高一级付费用户层的情况。
另外,重点运营维护的用户层还可进一步分层运营,比如“付费VIP用户”还可根据付费次数、付费金额数值大小,再切分出多个VIP等级进行差异化运营。
2、二维分层模型
二维用户分层,顾名思义即选取两个核心业务维度进行二维建模,最经典的就是波士顿矩阵分析法。波士顿矩阵分析法,又称四象限分析法、产品系列结构管理法,最早应用于企业咨询领域,用于帮助企业评估和筛选渠道或分析现有的产品结构问题,而其同样也可应用于互联网产品的用户分层模型。
如图3-1所示,我们可以根据用户的平台价值、维系成本高低2个指标维度,构建一个二维的用户模型,从而将平台用户划分为明星、金牛、问题、瘦狗4个象限的用户分层。在所有分层中,明星用户是需要重点去培育和做大的人群,问题用户是需要控制和优化的“羊毛”人群,金牛用户是需要在可控范围内控制好ROI的人群,瘦狗用户则需要不断尝试提升其平台价值。
另外,如果是针对电商平台上的时装消费用户进行分层,可以根据此类用户时尚敏感度、时装消费能力2个核心指标进行交叉建模,得到类似于图3-2所示的分层模型,从而分人群进行精细化运营。
在二维及以上用户分层模型中,都涉及到一个维度高低分界值的选取问题棱镜 项目,这时我们可以与BI、算法团队合作,通过二八原理、正态分布分析等方法挖掘关键节点的数据,再结合业务经验和数据来确定、验证和调优。
3、三维分层模型
三维用户分层,顾名思义是用三个维度来构建用户分层的模型,比如为人所熟知的RFM模型分层法,这也是用户分层中较为复杂的一类。
RFM模型,是衡量用户价值和创利能力的经典分层方法和客户管理工具,主要包括三大核心指标:
R:最近一次消费 (Recency)
F:消费频率 (Frequency)
M:消费金额 (Monetary)
如上图所示,通过R、F、M三个维度的交叉建构,我们得到一个三维的立方体用户模型,共划分出8个用户层,分别是重要价值用户、重要发展用户、重要保持用户、重要挽留用户、一般价值用户、一般发展用户、一般保持用户、一般挽留用户。藉此,便于衡量用户价值特征并分人群制订后续运营策略。
需要注意的是,RFM模型中R、F、M三大维度:最近一次消费、消费频率、消费金额,较适用于电商消费类平台的用户分层,而若应用在其他类型的平台时,需要根据具体的用户画像和业务场景在维度上进行灵活调整。
五、怎样基于用户分层开展精细化运营
如下图所示,这是基于用户生命周期链路建构的一维用户分层模型。通过这个分层模型,我们可将整个用户生命周期拆分为获客、升值、留存3个区间段,共包括潜在用户、新手用户、成长用户、成熟用户、衰退用户、流失用户6个用户层。
根据用户分层,我们先要明确各人群的总体运营目标,再制订和落地对应的运营策略/项目,逐步构建系统化的运营体系,同时在此过程中根据潜在新用户、留存老用户、流失用户3大类人群控制好成本补贴的力度和投产比,这就是一个粗略的基于用户分层的精细化运营“作战地图”。需要说明的是,上图中的具体策略和成本控制方案仅供参考,实际业务中需根据平台模式和用户属性进行变换。
结语
除了三大类用户分层模型之外,是否还有更高维度的分层模型呢?答案是肯定的,但用户分层并不是越细越好。总体来看,随着维度数量的增加,用户分层模型的内部结构也越加复杂,而通常来说复杂度与效率成反比关系。因此我们需把握好人群精细化和业务效率的平衡,因地制宜结合实际业务场景选择最适宜的分层模型。
作者:云洲 资深用户运营经理,10年用户运营经验,擅长千万级用户运营、精细化运营。
本文发布于:2023-04-02 12:32:13,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/zuowen/88ec1bf268d7a90d968c15b73101f6de.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:用户分层(用户分层和用户分群).doc
本文 PDF 下载地址:用户分层(用户分层和用户分群).pdf
留言与评论(共有 0 条评论) |