任选两个自然数,它们互质的概率是多少?它就是s = 2时欧拉乘积公式右边的连乘的倒数,因此它等于s = 2时欧拉乘积公式左边的连加的倒数,即1/ζ(2)。而ζ(2) = π^2/6,因此这个概率等于6/π^2 ≈ 60.79%。同样的,三个自然数互质的概率是1/ζ(3) ≈ 83.19%,四个自然数互质的概率是1/ζ(4) ≈ 92.39%。
在上一期节目(文章见理解黎曼猜想(一)背景 | 袁岚峰,视频见
https://www.bilibili.com/video/av34580488)中,我们首先介绍了黎曼猜想的背景,即质数分布问题。然后指出了研究质数分布的基本工具,即欧拉乘积公式:
这个公式左边的n指的是所有的自然数,1、2、3、4、5等等,右边的p指的是所有的质数,2、3、5、7、11等等。公式两端都出现的s是一个变量,当s > 1时欧拉乘积公式成立。
数学家经常用大写的希腊字母Σ来表示求和,用大写的希腊字母Π来表示连乘。用这种表达方式,我们可以把欧拉乘积公式简写成下面这样:
然后,我们给出了欧拉乘积公式的证明。如果把n-s记作f(n),左边就是无穷级数Σnf(n)。对这个无穷级数乘以[1 – f(2)],就会消掉所有的f(2n)项。再乘以[1 – f(3)],就会消掉剩下的项中所有的f(3n)项。再乘以[1 – f(5)],就会消掉剩下的项中所有的f(5n)项。把这样的操作重复无限多次,就会消掉所有的质数的倍数对应的项,也就是消掉所有的大于1的自然数对应的项,最后只剩下f(1)这一项,它等于1。把所有乘上去的[1 – f(2)] [1 – f(3)] [1 – f(5)]…等等移到右边去,就是欧拉乘积公式的右边Πp[1 – f(p)]-1。这样,我们就证明了欧拉乘积公式。
这其实就是当初欧拉的证明方法。它确实是一个非常巧妙的证明,堪称人类智慧的伟大结晶,令人赞叹不已。
欧拉
在上期节目的视频中,我注意到一件有趣的事。当我开始讲这个证明过程的时候,弹幕中充满了“告辞”、“劝退”、“阵亡”、“我是谁,我在哪,我在干什么”之类自暴自弃的话。但随着讲解过程的深入,越来越多的弹幕变成了“懂了”、“妙啊”、“存活”、“说得很清楚啊”。最后当证出来的时候,更是充满了一大片的“原来如此”、“太精彩了”、“恍然大悟”、“开心”等等。
真香
隔着屏幕都能感觉到同学们的“开心”,令我很欣慰。呐,做人呢,最重要就是开心!
做人最重要就是开心
理解数学有一种独特的开心,是其他任何东西都不能代替的。就像我以前讲蓝眼睛岛问题的十个层次从蓝眼睛问题,看群众理解能力的巨大差异 | 袁岚峰,完全理解了的同学就会非常高兴,因为他们从中学到的不止是这个问题本身的答案,还包括如何研究问题、如何获得深入理解的思维方法。
在上期节目的开头,我就讲了两个心理建设:一是打破跳蚤效应,勇敢地去面对数学;二是拿起纸笔,把瓜放下。任何同学如果真正按照这两点去做,我相信你就一定能领略到数学的乐趣!
回到欧拉乘积公式,左边的无穷级数Σnn-s是一个以s为自变量的函数,可以记作ζ(s)(ζ是一个希腊字母,发音zeta)。现在我们把它称为欧拉ζ函数,以后我们会看到它如何变成了黎曼ζ函数。通过研究ζ函数,我们就有可能对质数获得深刻的了解。什么样的了解呢?下面就来举一个例子。
请问:任选两个自然数,它们互质(coprime)的概率是多少?
首先来解释一下,两个自然数互质的意思,就是它们没有共同的质因数,换句话说就是,它们的最大公约数是1。例如2和3互质,2和15互质,但15和21不互质,因为15和21都以3作为质因数。很快可以看出,任意两个不同的质数是互质的,一个质数和一个不以它作为质因数的合数是互质的,1和任意自然数都是互质的。
了解了互质的定义之后,我们如何计算两个自然数互质的概率呢?
可以这样思考。首先,考虑两个自然数有公约数2的概率。这等价于它们都可以表示成2n,而所有可以表示成2n的自然数在所有的自然数当中占据的比例是1/2。因此,任选一个自然数,它可以表示成2n的概率是1/2。而任选两个自然数,它们都可以表示成2n的概率就是1/2的平方,这就是它们有公约数2的概率。那么作为跟这种情况互补的情况,两个自然数没有公约数2的概率,就是1-1/22。
然后,根据同样的推理,两个自然数没有公约数3的概率,就是1-1/32。继续下去,两个自然数没有公约数5的概率,就是1-1/52,如此等等。
最后,两个自然数互质,就等价于它们的公约数既没有2,也没有3,也没有5等等,没有任何一个质数。因此,两个自然数互质的概率等于上面各个概率乘起来,
这个表达式等于什么?仔细看一下,你就会发现,它就是s = 2的时候欧拉乘积公式右边那个连乘的倒数!因此,它等于s = 2时欧拉乘积公式左边那个连加的倒数,也就是1/ζ(2)。
真是妙啊!现在问题变成了,ζ(2)等于多少?根据定义,
也就是所有自然数的平方倒数的和。请问,它等于多少?
回答是π2/6,约等于1.6449。咦,在这里为什么会出现圆周率?这当然是有原因的啦。事实上这个等式又是欧拉证明的,这是欧拉的成名作之一。这个证明十分有趣,不过要用到微积分,许多同学们还没有学过,而且这个证明不是我们当前必需的,所以在这里我们就不讲了,有兴趣的同学请自己查阅文献。
欧拉
对于当前的目的,把ζ(2) = π2/6代进去,我们就知道了:两个自然数互质的概率等于6/π2!数值计算一下,它约等于60.79%。
这个结论对不对呢?我们还可以用计算机来验证一下。
我的朋友、风云学会会员陈经是计算机专家,他帮我写了一个程序,在1到32768(即2的15次方)之间随机取两个自然数,看它们是否互质。在测试1千万次后,发现两个自然数互质的次数总共有6080726次。因此在这个测试中,两个自然数互质的频率是60.80726%。请看,它跟理论值60.79%是多么接近!
事实上,如果你学过数值分析,你就会知道这是一个相当粗糙的数值实验。在你考虑全体自然数的性质的时候,32768这个取值上限实在是太小了,小得有点令人发笑。以后我们会讲到一个例子,算到1千亿亿都不足以保证结果成立。rng战队成员名单我们重复一下,1千亿亿!这是一个令人惊掉下巴的例子。但在这里,令人吃惊的却是,对32768这么小的样本取样,就足以得到十分接近理论值的结果。这说明,两个自然数互质的概率这个问题,随着取样范围的增大,收敛得是非常快的。
你看,我们是不是通过研究ζ函数,对质数的分布获得了惊人的结果?
根据同样的推理,我们很快会发现,任选s个自然数,它们互质的概率就是1/ζ(s)。在这里需要说明一下,三个或更多个自然数互质的意思,是所有这些数的整体的公约数只有1,而不是其中任何两个自然数的公约数也只有1。例如考虑2、3、4这三个自然数,其中的两个数2和4不互质,但这三个数的整体是互质的,这种情况我们把什么是211它算作三个数互质。
根据这个定义,你很容易看出,s越大,s个自然数互质的概率就越大。因为随着s的增大,某个质数刚好是s个自然数的共同质因子的可能性,就越来越低了。
从ζ函数的角度来考察,也确实应该如此。当s > 1的时候,n-s是一个减函数,所以ζ(s) = Σnn-s也是一个减函数。随着s的增加,ζ(s)在减小,所以ζ(s)的倒数在增大,也就是说s个自然数互质的概率在增大。
好,现在让我们把视线投向任意正整数s对应的ζ(s)。
在这里可以告诉大家,对于正的偶数s,ζ(s)是可以快速求出的,而且其中总是包含圆周率π的s次方。例如ζ(4),也就是所有自然数的四次方的倒数之和,它等于π4/90,约等于1.0823。由此可以算出,四个自然数互质的概率等于90/π4,约等于92.39%。
然而对于正的奇数s,ζ(s)的计算就会变得非常麻烦,很难有个简单的表达式。例如对于ζ(3),也就是所有自然数的三次方的倒数之和,我们就只能说它约等于1.2021。你要是想把它精确地表示出来,就只有一些比较复杂的积分或者体质差怎么调理无穷级数或者连分数的表达形式。
无论如何,根据ζ(3) ≈ 1.2021,我们可以算出三个自然数互质的概率约等于83.19%。从两个自然数互质的概率60.79%,到三个自然数互质的概率83.19%,到四个自然数互质的概率92.39%,我们看到它们确实是在上升的,符合预期。
随着s趋于无穷大,ζ(s) = Σnn-s当中只有第一项1不受影响,后面的项都迅速地趋近于0,所以ζ(s)会趋近于1。相应的,s个自然数互质的概率也确实会趋近于100%,这都是很容易理解的。
你也许会问:s只能取整数值吗?当然不是,它完全可以取3/2(也就是1.5)或者1.6或者π等非整数的值。对于非整数的s,ζ(s)仍然是有明确定义的,只不过这时不圣诞节活动主题能跟所谓“s个自然数互质的概率”联系起来了。你可以计算ζ(3/2),它约等于2.6124,但你无法谈论所谓“1.5个自然数”。
如果你对分数指数感到迷惑,请翻一下高中数学课本就知道了。这里可以提示一下,一个数的3/2次方,等于它的三次方的平方根。而一个数的π次方,就等于它的3次方、3.1次方、3.14次方、3.141次方、3.1415次方、3.14159次方等等这个数列的极限。
现在,我们对ζ函数增加了许多了解,明白了它跟质数有深刻的联系,并且知道了它在若干个点上的取值。现在,你是不是对这个函数感到很亲切,而不会感到恐惧了?
不过我们必须强调一下,到目前为止,所有的s都是大于1的。你也许会问,ζ(1)等于多少?也就是说,所有自然数的倒数和等于多少?在数学上,我们又把它称为调和级数(harmonic ries)。
现在,一个关键点来了:ζ(1)等于无穷大!也就是说,调和级数是发散的!
为什么会这样?让我们把ζ(1)的表达式写出来,就能够做下面的推理:
最后那个式子中,随着项数的增加,会出现无穷多个1/2。无穷多个1/2加起来当然会大于任意的有限值,因此最后的式子是发散的。而ζ(1)比它还要大,所以当然也是发散的。
如果你觉得上面的表达方式不太严格,那么我们真正想表达的意思是:对于任意大的自然数k,都有下面的不等式。
实际上,调和级数虽然是发散的,但它发散得非常慢。把前面的10的43次方项加起来,都没有超过100。10的43次方是多少?一亿是10的8次方,所以10的43次方就是1千亿亿亿亿亿。用物理世界举个例子,整个宇宙的半径大约是137亿光年,量级是10的26次方米,一个原子核的半径是10的-15次方米的量级,宇宙半径除以原子核半径也不过是10的41次方而已,还要再乘以100才能达到10的43次方。想想看,1千亿亿亿亿亿个数加起来,都没超过100!这是怎样的一种增长速度啊!
为什么会这样呢?原因又是欧拉告诉我们的。欧拉证明了,调和级数的增长速度,大致就是自然对数的增长速度。如果你没学过自然对数,那么可以简单解释一下:常用对数(经常写成lg)是以10为底的对数,而自然对数(经常写成ln)是以e为底的对数,这里的e是一个常数,约等于2.71828。为什么要以这样一个数为底?因为在数学上,lnx具有许多很好的性质,处理起来比lgx方便得多。其实在数学中,自然对数才是“常用”的,比所谓“常用对数”常用得多。
欧拉
更具体地说,欧拉证明了,调和级数的前n项之和约等于lnn,而随着n的增大,它们的差值会趋近于一个常数γ:
这个常数叫什么名字呢?当然,又叫做欧拉常数(Euler’s constant)……咦,我为什么要说“又”呢?
欧拉
我们可以用两个面积的差来形象地表现欧拉常数。一个面积是一系列的矩形之和,它们的宽度都是1,而高度从1到1/2,到1/3,到1/4,如此等等,一路下降。另一个面积是y = 1/x即倒数函数曲线下面的面积,即图中的深红色部分,数学家会告诉你,它就等于lnx。这两个面积的差,就是图中的蓝色部分。
用面积表示欧拉常数
你会看到,在每一个矩形中,矩形的面积都大于倒数函数曲线下方的面积,但相差得越来越小。当x趋于无穷的时候,蓝色部分的面积就趋于一个有限值,它等于欧拉常数。
了解了调和级数即ζ(1)的发散性质以后,让我们回到欧拉乘积公式。在上一期中我们说过,欧拉乘积公式只在s > 1的时候成立。有同学问我,欧拉乘积公式的推导过程好像跟s完全没有关系,那么它是不是对于任意的s都成立呢?回答是:不行,只有对大于1的s才成立。
这是因为我们的推导过程有一个前提,就是ζ(s)是一个有限值,或者说ζ(s)是收敛的。只有在这个前提下,才能把它当成一个正常的数进行种种操作,例如乘以1 – f(2),消去所有包含2n的项。但假如ζ(s)是发散的,那么这样的操作就毫无意义,有可能导致各种各样的错误。例如你经常听说的所谓“全体自然数的和等于-1/12”,就是这样的一个错误!
在欧拉那个时代,许多数学知识的基础定义还不够严格,数学家还经常搞一些有越界之嫌的操作,欧拉就搞了不少。而现代的数学家是非常注重严格性的,他们给你看的证明,一定都是保证了可靠性,每一步都有精确定义的。我虽然不是数学家,但我给你看的证明,也一定是保证了可靠性的。
既然ζ(1)是发散的,那么你很容易发现,当s < 1的时候,ζ(s)会变得更大,当然就更是发散的了。因此,对欧拉ζ函数的研究,只能在s > 1的范围内进行。从中我们确实能得到一些有趣的结论,例如s个自然数互质的概率等于1/ζ(s),但这些毕竟还是对质数分布的间接了解,直接的了解还很欠缺。
如何才能对质数的分布获得更加深入的了解呢?
我们的大事件来了:你的好友黎曼已上线!欧拉ζ函数升级为黎曼ζ函数!
黎曼
更多袁岚峰的文章:
中国科技实力正以多快的加速度逼近美国 | 袁岚峰
纪念霍金:人是一根会思想的芦苇 | 袁岚峰
中国科技,别吹上天莫贬入地 | 袁岚峰
中兴、芯片和技术战争 | 科技袁人
科学让人听不懂吗? | 袁岚峰
从芯片到星辰大海 | 袁岚峰
医药的逻辑 | 袁岚峰
韩春雨撤稿一周年回顾 | 袁岚峰
奇妙的数学:蓝眼睛岛和强弱共识 | 袁岚峰
科大60周年校庆,星际迷航发来贺电 | 袁岚峰
日本诺贝尔奖现在多于中国很正常,但未来属于中国 | 袁岚峰
永不消逝的信棚户区改造政策息:霍金的最后一篇论文 | 袁岚峰
理解黎曼猜想(一)背景 | 袁岚峰
本文发布于:2023-03-31 02:30:51,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/zuowen/8724d3744553454c2b79165daffaf04f.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:互质数是什么意思举例说明(带你了解互质数的定义是什么).doc
本文 PDF 下载地址:互质数是什么意思举例说明(带你了解互质数的定义是什么).pdf
留言与评论(共有 0 条评论) |