首页 > 作文

Java字符串拼接的五种方法及性能比较分析(从执行100次到90万次)

更新时间:2023-04-04 03:32:32 阅读: 评论:0

目录
> 源代码,供参考> 测试结果:> 查看源代码,以及简单分析

> 字符串拼接一般使用“+”,但是“+”不能满足大批量数据的处理,java中有以下五种方法处理字符串拼接,各有优缺点,程序开发应选择合适的方法实现。

1. 加号 “+”

2. string contact() 方法

3. stringutils.join() 方法

4. stringbuffer append() 方法

5. stringbuilder append() 方法

> 经过简单的程序测试,从执行100次到90万次的时间开销如下表:

由此可以看出:

1. 方法1 加号 “+” 拼接 和 方法2 string contact() 方法 适用于小数据量的操作,代码简洁方便,加号“+” 更符合我们的编码和阅读习惯;

2. 方法3 stringutils.join() 方法 适用于将arraylist转换成字符串,就算90万条数据也只需68ms,可以省掉循环读取arraylist的代码;

3. 方法4 stringbuffer append() 方法 和 方法5 stringbuilder append() 方法 其实他们的本质是一样的,都是继承自abstractstringbuilder,效率最高,大批量的数据处理最好选择这两种方法。

4. 方法1 加号 “+” 拼接 和 方法2 string contact() 方法 的时间和空间成本都很高(分析在本文末尾),不能用来做批量数据的处理。

> 源代码,供参考

package cnblogs.twzheng.lab2;/** * @author tan wenzheng * */import java.util.arraylist;import java.util.list;import org.apache.commons.lang3.stringutils;public class teststring {    private static final int max = 100;    public void testplus() {        system.out.println(">>> testplus() <<<");        string str = "";        long start = system.currenttimemillis();        for (int i = 0; i < max; i++) {            str = str + "a";        }        long end = system.currenttimemillis();        long cost = end - start;        system.out.println("   {str + \"a\"} cost=" + cost + " ms");    }    public void testconcat() {        system.out.println(">>> testconcat() <<<");        string str = "";        long start = system.currenttimemillis();        for (int i = 0; i < max; i++) {            str = str.concat("a");        }        long end = system.currenttimemillis();        long cost = end - start;        system.out.println("   {str.concat(\"a\")} cost=" + cost + " ms");    }    public void testjoin() {        system.out.println(">>> testjoin() <<<");        long start = system.currenttimemillis();        list<string> list = new arraylist<string>();        for (int i = 0; i < max; i++) {            list.add("a");        }        long end1 = system.currenttimemillis();        long cost1 = end1 - start;        stringutils.join(list, "");        long end = system.currenttimemillis();        long cost = end - end1;        system.out.println("   {list.add(\"a\")} cost1=" + cost1 + " ms");        system.out.println("   {stringutils.join(list, \"\")} cost=" + cost                + " ms");    }    public void teststringbuffer() {        system.out.println(">>> teststringbuffer() <<<");        long start = system.currenttimemillis();        stringbuffer strbuffer = new stringbuffer();        for (int i = 0; i < max; i++) {            strbuffer.append("a");        }        strbuffer.tostring();        long end = system.currenttimemillis();        long cost = end - start;        system.out.println("   {strbuffer.append(\"a\")} cost=" + cost + " ms");    }    public void teststringbuilder() {        system.out.println(">>> teststringbuilder() <<<");        long start = system.currenttimemillis();        stringbuilder strbuilder = new stringbuilder();        for (int i = 0; i < max; i++) {            strbuilder.append("a");        }        strbuilder.tostring();        long end = system.currenttimemillis();        long cost = end - start;        system.out                .println("   {strbuilder.append(\"a\")} cost=" + cost + " ms");    }}

> 测试结果:

1. 执行100次, private static final int max = 100;

>>> testplus() <<<   {str + "a"} cost=0 ms>>> testconcat() <<<   {str.concat("a")} cost=0 ms>>> testjoin() <<<   {list.add("a")} cost1=0 ms   {stringutils.join(list, "")} cost=20 ms>>> teststringbuffer() <<<   {strbuffer.append("a")} cost=0 ms>>> teststringbuilder() <<<   {strbuilder.append("a")} cost=0 ms

2. 执行1000次, private static final int max = 1000;

>>> testplus() <<<   {str + "a"} cost=10 ms>>> testconcat() <<<   {str.concat("a")} cost=0 ms>>> testjoin() <<<   {list.add("a")} cost1=0 ms   {stringutils.join(list, "")} cost=20 ms>>> teststringbuffer() <<<   {strbuffer.append("a")} cost=0 ms>>> teststringbuilder() <<<   {strbuilder.append("a")} cost=0 ms

3. 执行1万次, private static final int max = 10000;

>>> testplus() <<<   {str + "a"} cost=150 ms>>> testconcat() <<<   {str.concat("a")} cost=70 ms>>> testjoin() <<<   {list.add("a")} cost1=0 ms   {stringutils.join(list, "")} cost=30 ms>>> teststringbuffer() <<<   {strbuffer.append("a")} cost=0 ms>>> teststringbuilder() <<<   {strbuilder.append("a")} cost=0 ms

4. 执行10万次, private static final int max = 100000;

>>> testplus() <<<   {str + "a"} cost=4198 ms>>> testconcat() <<<   {str.concat("a")} cost=1862 ms>>> testjoin() <<<   {list.add("a")} cost1=21 ms   {stringutils.join(list, "")} cost=49 ms>>> teststringbuffer() <<<   {strbuffer.append("a")} cost=10 ms>>> teststringbuilder() <<<   {strbuilder.append("a")} cost=10 ms

5. 执行20万次, private static final int max = 200000;

>>> testplus() <<<   {str + "a"} cost=17196 ms>>> testconcat() <<<   {str.concat("a")} cost=7653 ms>>> testjoin() <<<   {list.add("a")} cost1=20 ms   {stringutils.join曾玮(list, "")} cost=51 ms>>> teststringbuffer() <<<   {strbuffer.append("a")} cost=20 ms>>> teststringbuilder() <<<   {strbuilder.append("a")} cost=16 ms

6. 执行50万次, private static final int max = 500000;

>>> testplus() <<<   {str + "a"} cost=124693 ms>>> testconcat() <<<   {str.concat("a")} cost=49439 ms>>> testjoin() <<<   {list.add("a")} cost1=21 ms   {stringutils.join(list, "")} cost=50 ms>>> teststringbuffer() <<<   {strbuffer.append("a")} cost=20 ms>>> teststringbuilder() <<<   {strbuilder.append("a")} cost=10 ms

7. 执三个青春梦行90万次, private static final int max = 900000;

>>> testplus() <<<   {str + "a"} cost=456739 ms>>> testconcat() <<<   {str.concat("a")} cost=186252 ms>>> testjoin() <<<   {list.add("a")} cost1=20 ms   {stringutils.join(list, "")} cost=68 ms>>> teststringbuffer() <&礼记饼家lt;<   {strbuffer.append("a")} cost=30 ms>>> teststringbuilder() <<<   {strbuilder.append("a")} cost=24 ms

> 查看源代码,以及简单分析

string contact 和 stringbuffer,stringbuilder 的源代码都可以在java库里找到,有空可以研究研究。

1. 其实每次调用contact()方法就是一次数组的拷贝,虽然在内存中是处理都是原子性操作,速度非常快,但是,最后的return语句会创建一个新string对象,限制了concat方法的速度。

    public string concat(string str) {        int otherlen = str.length();        if (otherlen == 0) {            return this;        }        int len = value.length;        char buf[] = arrays.copyof(value, len + otherlen);        str.getchars(buf, len);        return new string(buf, true);    }

2. stringbuffer 和 stringbuilder 的append方法都继承自abstractstringbuilder,整个逻辑都只做字符数组的加长,拷贝,到最后也不会创建新的string对象,所以速度很快,完成拼接处理后在程序中用strbuffer.tostring()来得到最终的字符串。

    /**     * appends the specified string to this character quence.     * <p>     * the characters of the {@code string} argument are appended, in     * order, increasing the length of this quence by the length of the     * argument. if {@code str} is {@code null}, then the four     * characters {@code "null"} are appended.     * <p>     * let <i>n</i> be the length of this character quence just prior to     * execution of the {@code append} method. then the character at     * index <i>k</i> in the new character quence is equal to the character     * at index <i>k</i> in the old character quence, if <i>k</i> is less     * than <i>n</i>; otherwi, it is equal to the character at index     * <i>k-n</i> in the argument {@code str}.     *     * @param   str   a string.     * @return  a reference to this object.     */    public abstractstringbuilder append(string str) {        if (str == null) str = "null";        int len = str.length();        ensurecapacityinternal(count + len);        str.getchars(0, len, value, count);        count += len;        return this;    }
    /**     * this method has the same contract as ensurecapacity, but is     * never synchronized.     */    private void ensurecapacityinternal(int minimumcapaci史地生ty) {        // overflow-conscious code        if (minimumcapacity - value.length > 0)            expandcapacity(minimumcapacity);    }    /**     * this implements the expansion mantics of ensurecapacity with no     * size check or synchronization.     */    void expandcapacity(int minimumcapacity) {        int newcapacity = value.length * 2 + 2;        if (newcapacity - minimumcapacity < 0)            newcapacity = minimumcapacity;        if (newcapacity < 0) {            if (minimumcapacity < 0) // overflow                throw new outofmemoryerror();            newcap而或长烟一空或的意思acity = integer.max_value;        }        value = arrays.copyof(value, newcapacity);    }

3. 字符串的加号“+” 方法, 虽然编译器对其做了优化,使用stringbuilder的append方法进行追加,但是每循环一次都会创建一个stringbuilder对象,且都会调用tostring方法转换成字符串,所以开销很大。

  注:执行一次字符串“+”,相当于 str = new stringbuilder(str).append(“a”).tostring();

4. 本文开头的地方统计了时间开销,根据上述分析再想想空间的开销。常说拿空间换时间,反过来是不是拿时间换到了空间呢,但是在这里,其实时间是消耗在了重复的不必要的工作上(生成新的对象,tostring方法),所以对大批量数据做处理时,加号“+” 和 contact 方法绝对不能用,时间和空间成本都很高。

到此这篇关于java字符串拼接的五种方法及性能比较分析(从执行100次到90万次)的文章就介绍到这了,更多相关java字符串拼接内容请搜索www.887551.com以前的文章或继续浏览下面的相关文章希望大家以后多多支持www.887551.com!

本文发布于:2023-04-04 03:32:31,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/zuowen/754d8b829f4bb862055add0e443321cf.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:Java字符串拼接的五种方法及性能比较分析(从执行100次到90万次).doc

本文 PDF 下载地址:Java字符串拼接的五种方法及性能比较分析(从执行100次到90万次).pdf

标签:方法   字符串   加号   时间
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图