基于混合势场法的无人潜航器路径规划及编队方法研究
王 健,张 华,徐令令,曹园山,陈 伟,顾媛媛
(中国船舶科学研究中心,江苏 无锡 214082)
摘要:针对水下无人潜航器航行与探测作业应用过程中避障、航向保持、路径跟踪多参数控制以及欠驱动
问题,提出一种混合势场路径规划及避障方法。以虚拟力的理念,将潜航器避障算法与路径跟踪算法进行混合,合
并为统一的广义势场架构。该方法将避障、航向保持、路径跟踪等多自由度驱动问题进行统一,以单输出的形式展
现,适合单舵控制的欠驱动水下无人潜航器。利用“海翔-H”混合动力水下无人潜航器进行实环境下的路径跟踪、
单障碍避障、双障碍避障、多障碍连续避障的航行试验,验证混合势场法的有效性。
关键词:水下无人潜航器;路径规划;避障;混合势场
中图分类号:TP391 文献标识码:A
文章编号: 1672 – 7649(2020)12 – 0097 – 04 doi:10.3404/.1672 – 7649.2020.12.019
Rearchonpathplanningandobstacleavoidancemethodofunderwater
unmannedvehiclebadonhybridpotentialfieldmethod
WANG Jian, ZHANG Hua, XU Ling-ling, CAO Yuan-shan, CHEN Wei, GU Yuan-yuan
(Chian Ship Scientific Rearch Center, Wuxi 214082, China)
Abstract:美国英文怎么读 Aiming at the problems of obstacle avoidance, heading keeping, path tracking, multi-parameter control and
under-actuation in the process of UUV operation application, a hybrid potential field on path planning and obstacle avoid-
ance method is propod. Bad on the concept of virtual force, the submarine obstacle avoidance algorithm and the path
tracking algorithm are mixed and merged into a unified generalized potential field architecture. This method unifies the
multi-degree-of-freedom driving problems such as obstacle avoidance, heading maintaining, and path tracking, and prents
it in the form of a single output, which is suitable for under-driven UUV. Then the Haixiang-H hybrid UUV carried out the
navigation test of path tracking, single obstacle avoidance, double obstacle avoidance, and multiple obstacle continuous
obstacle avoidance in real environment, which verified the effectiveness of the hybrid potential field method.
Keywords: UUV;path tracking;obstacle avoidance;hybrid potential field
0 引 言
水下无人潜航器(UUV)是一种无人化能够自主
在水下作业完成特定功能的水下无人装备[1]。UUV
的精确航迹跟踪能力对于UUV来说是一项很关键的行
为能力,它是完成UUV作业任务(如海底地形调查,
远程航行等)的一种重要技术手段。
对于一般UUV来说,通常采用螺旋桨进行驱动,
以尾舵来控制航向。在进行路径跟踪时需要通过尾舵
同时进行航向以及航迹控制,这种单尾舵的控制方式
属于欠驱动的方式,需要设计合理的潜航器航行控制
算法满足潜航器这种欠驱动的方式。
1 混合势场法路径跟踪及避障架构
对于路径规划方法,通常是针对从起始点航行到
目标点,自主寻找到一条最优的无障碍航线,一般应
用方法有A*算法、蚁群算法[2]、粒子群算法[3]、势场法[4]
等。而水下潜航器一般在实际作业时都有一条预规划
的航线,潜航器在一般情况下需要按照预设航线运
动,在遇到障碍等特殊情况需要进行规避,规避动作
也必须在预设航线的趋势上进行规避。
本文提出一种混合势场架构,将潜航器避障算法
与路径跟踪算法进行混合,合并为一种统一的广义势
场。该种方法将避障、航向保持、路径跟踪等多驱动
第42 卷 第 12 期舰 船 科 学 技 术
Vol. 42, No. 12
2020 年 12 月SHIP SCIENCE AND TECHNOLOGYDec. , 2020
收稿日期:2020 – 08 – 31
作者简介:王健(1989 − ),男,高级工程师,从事水下无人潜航器理论及相关控制技术研究。
问题进行统一,输出为单舵控制的方式,适合欠驱动
潜航器。混合势场法控制架构如图1所示。针对潜航
器单驱动问题,算法最终的输出层必须为单目标的方
式,以目标航向的形式输送给潜航器执行层。潜航器
的目标航向来源于潜航器本体所受各抽象力的合力,
主要有引力合力和斥力合力。潜航器的引力合力来源
于潜航器的航线引力以及航向引力,潜航器的斥力来
源于各障碍斥力。
图 1 混合势场法控制架构图
Fig. 1 Control architecture of hybrid potential field method
2 混合势场法的无人潜航器路径规划方法
2.1势场法下路径跟踪方法
目前势场法的理论应用很广,所谓人工势场法是
将实体环境中的UUV以及障碍物都抽象为三维空间中
的微粒,在微粒间构建虚拟力。障碍物形成斥力、目
标点形成引力,通过多种力的合力实现UUV的正确运
动方向[5]。
⇀
F
Hatt
−−−→
F
Xatt
⇀
F
Hatt
−−−→
F
Xatt
参照势场法理论[6],潜航器在进行水下路径跟踪
时,在潜航器周围构建虚拟力场,如图2所示。由潜
航器偏离航线产生的航线偏差构建对潜航器的吸引力
,吸引力的方向由潜航器指向预设定的航线。同
时潜航器预设定的保持航向对潜航器亦产生吸引力
,吸引力的方向由设定航线的A点指向B点。潜
航器实际目标航向由吸引力,合力方向决
定。对于吸引力的构建方法有多种,本文采用距离值构
建法。距离构建法中,建立引力势能函数见式(1),
Uk
att
=
0,0
gk⩽dgoal
,
1
2
K
a
R2
gk
,Rgk>dgoal
。
(1)
K
a
R
gk
d
goal
其中:为标量控制增益;为航行器和目标中心点
之间的距离;为引力影响半径,在该值范围内引
力影响消失。由此产生的吸引力为吸引势能场的负的
梯度,具有如下形式:
Fk
att
=−∇Uk
att
=
{
0,0
gk⩽dgoal
,
−ka
R
gk∇Rgk,Rgk>dgoal
。
(2)
⇀
F
Hatt
H
将式(2)扩展到潜航器航线以及航向吸引力上
来,吸引力的大小由潜航器偏离航线的垂直距离
乘吸引力系数决定,如下式:
|
FHatt|
=H,(3)
−−−→
F
Xatt∆
吸引力的大小由潜航器航向距离量化值乘
吸引力系数决定,如下式比基尼瑜伽 :
|
FXatt|
=∆,(4)
dk
r
则潜航器目标航向,为航线航向与合力夹角
的合力值:
d=k+r
。(5)
其中:
r=arctan
(
−|FHatt|
|
FXatt|
)
。(6)
2.2混合势场法下路径跟踪及避障方法
一般在研究UUV避障中,通常需要一条从起始点
到目标点的无障碍路径。而通常一般UUV在进行作业
时需要按照实际的路径进行作业,在遇到障碍后进行
自主规避,规避完成后回归预设定的路线。
在建立势场法路径跟踪方法后,在势场法全面的
算法架构下,进行自主避障只需要遵循势场法的理念
在潜航器本体上添加虚拟的障碍物斥力使水下无人潜
航器在任务空间中远离障碍物,即可实现自主避障[7]。
建立潜航器障碍斥力场同样采用距离值的方法进行构
建。在建立排斥势能场时,同时考虑了障碍物对航行
器的作用以及目标对航行器的作用,可用来解决目标
在障碍物影响范围内的情况。建立的排斥势能函数为
如下式:
u=
1
2
m
(
1
rre
−
1
Po
)
2
ratn,rre
0,rre⩾Po。
(7)
排斥势能场负的梯度,即由排斥势能场产生的排
斥力,潜航器障碍物斥力函数见式(8),斥力的方向
由障碍物指向潜航器本体。
图 2 势场法路径跟踪图示
Fig. 2 Diagram of path tracking bad on potential field method
98
舰 船 科 学 技 术
第 42 卷
Yrer=m
(
1
rre
−
1
Po
)
(
1
Rrei
)
ratn,(8)
ratrre
Rrei=rre2Pom
其中:为当前点和吸引目标距离;为当前点和
障碍距离,;为障碍物影响距离;为斥
力增益系数。
F
Natt
F
Rep
F
NSJ
F
NSJ
在增加相关斥力场后,潜航器的受力以及运动图
解如图3所示。图中航线以及航向的引力合力对
潜航器产生吸引力,障碍物对潜航器产生斥力,2种
力的综合作用产生力,力将指引潜航器产生航
向偏转作用,指引潜航器绕开障碍物进行规避运动。
图 3 混合势场法避障受力示意图
Fig. 3 Force diagr传授的近义词 am of obstacle avoidance with
mixed potential field method
3 实航测试
采用中国船舶科学研究中心研制的“海翔-H”混
合动力水下无人潜航器进行试验,“海翔-H”无人潜
航器具备螺旋桨以及尾舵可用于进行有动力推进航行。
3.1无障碍路径跟踪测试
进行无障碍路径跟踪测试,给潜航器预设计一条
1 km长的弧形折线预设轨迹,如图4虚线所示。潜航
器从图中起点开始运动,到达终点停止,图中实线为
潜航器实际轨迹,从图中可以看出潜航器能够很好的
沿预设定路学生会演讲稿 线进行运动,在受到实际环境的风浪流干
扰后偶尔会偏离预设定的航线但很快能够自主回归,
轨迹跟踪误差小于5 m。
3.2有障碍路径跟踪测试
在进行潜航器避障试验时,分小星星简谱吉他谱 别设计潜航器单障
碍避障、双障碍避障、多障碍连续避障工况,考验方
法的可靠性。水下单障碍避障如图5所示,主要是考
验算法控制器在路径跟踪以及障碍规避、回航的能
力;双障碍避障如图6所示,主要是考验算法控制器
在按照预设定的航线运动过程中受到来自双重障碍的
夹击作用,滑翔器是否能够从两障碍物中间找到最优
路径通过,不能出现堵死的状况;多障碍连续避障如
图7所示,主要是考验算法控制器在航行路线有多个
障碍,进行连续避障、而不发散的能力。
图 5 单障碍避障路线
Fig. 5 Single obstacle avoidance route
图 6 双障碍避障路线
Fig. 6 Double obstacle avoidance route
图中虚线为预设运动轨迹,圆圈为7 m直径圆形
障碍,实线为实际轨迹。从图中可以看出,在未接近
障碍前潜航器按照设定路线航行,靠近障碍后潜航器
开始自主的偏离航线进行自主规避,规避完成后回到
预设定路线。同时在双障碍夹击作用能够找到最优路
径通过,在多个障碍连续作用能够连续避障不发散。
4 结 语
本文从应用实际出发,针对水下无人潜航器避
图 4 轨迹跟踪路线
Fig. 4 Trajectory tracking
第 42 卷王 健,等:基于混合势场法的无人潜航器路径规划及编队方法研究
99
障、航向保持、航线跟踪等多输出、单尾舵输入欠驱
动控制问题,提出一种统一架构的混合势场法。该方
法巧妙利用虚拟力的理念,在避障控制、航向保持控
制、航线跟踪控制等全部建立虚拟力场,通过多种力
场的综合作用生成单一合力场指引尾舵操纵。同时本
文还利用“海翔-H”水下无人潜航器进行实际水域的
航线跟踪、单障碍避障、双障碍避障、多障碍连续避
障测试。结果表明,混合势场法能够很好的兼顾潜航
器实际作业时的航向保持、航线跟踪、避障等工况,
具备良好的鲁棒性。另外,通过本文建立起的统一势
场法增加虚拟力还可以很快的拓展到无人潜航器的编
队控制中。
参考文献:
范展. 水下无人平台自主被动探测技术研究[D]. 哈尔滨: 哈
尔滨工程大学, 2015
[1]
LIU H, XU B, LU DJ, et al. A path planning approach for crowd
evacuation in buildings bad on improved artificial bee colony
algorithm[J]. Applied soft Computing, 2018, 68: 360–376.
[2]
严浙平, 邓超, 赵玉飞, 等. 改进粒子群算法在UUV航迹规划
中的应用[J]. 华中科技大学学报(自然科学版), 2013, 41(12):
64–68.
[3]
吴正义, 唐念, 陈永亮, 等. 基于改进人工势场法的AUV路径
规划[J]. 化工自动化仪表, 2014, 41(12): 1421–1423.
[4]
WEI K, REN B Y. A method on dynamic path planning for
robotic manipulator autonomous obstacle avoidance bad on an
improved RRT algorithm[J]. Sensors, 2018, 18(2): 571.
[5]
罗强, 王海宝, 崔小劲, 等. 改进人工势场法自主移动机器人
路径规划[J]. 控制工程, 2019, 26(6): 1091–1098.
[6]
万方, 周风余, 尹磊, 等. 基于电势场法的移动机器人全局路
径规划算法[J]. 机器人, 2019, 41(6): 742–750.
[7]
[上接第12页]
LIAO P, ZHANG S, SUN D. A dual caudal-fin miniature
robotic fish with an integrated oscillation and jet propulsive
mechanism[J]. Bioinspiration & Biomimetics, 2018, 13(3):
036007.
[ 7 ]
TRIANTAFYLLOU M S, TRIANTAFYLLOU G S. An
efficient swimming machine[J]. Scientific American, 1995,
273(3): 40–45, 48.
[ 8 ]
ZHEN X, WAN C, FAN R, et al. Artificial lateral line bad
local nsing between two adjacent robotic fish[J].
Bioinspiration & Biomimetics, 2017, 13(1): 016002.
[ 9 ]
CHEW C M, LIM Q Y, YEO K S. Development of propulsion
mechanism for Robot Manta Ray[C]//IEEE International
Conference on Robotics & Biomimetics. IEEE, 2016.
[10]
GAO J, BI S, XU Y, et al. Development and design of a
robotic manta ray featuring flexible pectoral fins[C]//IEEE
International Conference on Robotics & Biomimetics. IEEE,
2008.
[11]
STEFANINI C, OROFINO S, MANFREDI L, et al. A
compliant bioinspired swimming robot with neuro-inspired
control and autonomous behavior[C] IEEE International
Conference on Robotics & Automation. IEEE, 2012.
[12]
ZHONG Y, LI Z, DU R. A novel robot fish with wire-driven
active body and compliant tail[J]. IEEE/ASME Transactions on
Mechatronics, 2017, 22(4): 1633–1643.
[13]
CLAPHAM R J, HU H. iSplash-II: Realizing fast carangiform
swimming to outperform a real fish[C]//IEEE/RSJ International
Conference on Intelligent Robots & Systems. IEEE, 2014.
[14]
SU Z, YU J, TAN M, et al. Implementing flexible and fast
turning maneuvers of a multijoint robotic fish[J]. IEEE/ASME
Transactions on Mechatronics, 2014, 19(1): 329–338.
[15]
ZHU J, WHITE C, WAINWRIGHT D K, et al. Tuna robotics:
A high-frequency experimental platform exploring the
performance space of swimming fishes[J]. Science Robotics,
2019, 4(34): eaax4615.
[16]
DU S, WU Z, and YU J. Design and yaw control of a two-
motor-actuated biomimetic robotic fish[C]//2019 IEEE
International Conference on Robot电子秤怎么用 ics and Biomimetics
(ROBIO). IEEE, 2019.
[17]
DU S, WU Z, WANG J, et al. Design and control of a two-
motor-actuated tuna-inspired robot system[J] IEEE
Transactions on Systems, Man, and Cybernetics: Systems,
2019.
[18]
YU J, WU Z, SU Z, et al. Motion control strategies for a
repetitive leaping robotic dolphin[J]. IEEE/ASME Transactions
on Mechatronics, 2019, 24(3): 913–923.
[19]
WHL S, SCHUSTER S. The predictive start of hunting
archer fish: A flexible and preci motor pattern performed
with the kinematics of an escape C-start[J]. Journal of
Experimental Biology, 2007, 210(2): 311–324.
[20]
图 7 多障碍避障路线
Fig. 7 Obstacle avoidance route
100
舰 船 科 学 技 术
第 42 卷
本文发布于:2023-03-16 12:28:23,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/zuowen/2da62a6bd0669139f40374c15103b882.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:于潜.doc
本文 PDF 下载地址:于潜.pdf
留言与评论(共有 0 条评论) |