植树问题教案

更新时间:2023-09-03 07:31:00 阅读: 评论:0

植树问题教案

植树问题教案

植树问题教案

作为一名为他人授业解惑的教育工作者,时常会需要准备好教案,借助教案可以让教学工作更科学化。优秀的教案都具备一些什么特点呢?以下是为大家收集的植树问题教案,欢迎阅读与收藏。

植树问题教案1

学情分析:

四年级的学生以形象思维为主,而且抽象逻辑思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。

教材分析:

“植树问题”原本属于经典的奥数教学内容,而解决植树问题的思想方法是实际生活中应用比较广泛的数学思维方法。本册“数学广角”主要是渗透有关植树问题的一些思想方法。通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

这个数学内容既需教师的有效引领,也需要学生的自主探究。而例1是探讨关于一条线段的植树问题并且两端都要栽树的情况,让学生先通过画线段,再来发现栽树的棵数和间隔数之间的关系,从而会应用植树问题的模型解决一些相关的实际问题。

设计理念:

《新课标》提出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。”所以解题不是本节课教学的主要目的,主要目的是从实际问题入手,引导学生在培养学生通过接触这些重要的数学思想方法,经历猜想、实验、推理等数学探索的过程,激发学生对数学的好奇心和求知欲,增强学生学习数学的兴趣。

教学内容:

人教版实验教科书数学四年级下册第117—118页的例1及相应的“做一做”。

教学目标:

知识与技能:

1、理解间隔概念,知道间隔数与棵树之间的关系,初步建构植树问题的数学模型。

2、能根据数模解决简单的实际问题,培养学生观察、分析及推理能力。

数学思考:

1、让学生经历观察、猜想、自主实验、探究、交流,从中发现规律,抽取数学模型过程。

2、使学生经历和体验“复杂问题简单化”的解题策略和方法。

解决问题:

能够应用本节所建构的植树问题的数模以及探寻到的规律,针对实际情形灵活的来解决问题。

情感态度与价值观:

让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

教学重点:会应用植树问题的规律解决一些相关的实际问题。

教学难点: 建构数模,探寻规律。

教学准备:课件、实物投影仪、每组一张表格

教学流程:

一、创设情景,导入新课。

1、猜谜语

师:“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。猜到了吗?”“对!就是这双勤劳的双手。请同学们伸出左手五指张开,看看你能想到哪个数?”“5是指5个手指,胡老师想到了4,你知道在哪吗?”“在数学上我们把这些空格叫做间隔(板书:间隔)也就是说5个手指之间有4个间隔,间隔数是4。”

“现在看老师的手变魔术了,5个手指有4个间隔,4个手指有3个间隔……你们找出手指数与间隔数之间的关系了吗?”(指名说)

2、找间隔

“生活中的间隔随处可见,请看大屏幕。你找到间隔了吗?”(出示课件2—4)

“我们的身边还有间隔吗,一起来找找吧!”

3、揭示课题

出示课件5、6。师:“你更喜欢那组画面?怎样才能拥有这样美丽的环境呢?”

“对!植树造林,美化环境是我们每个人应尽的义务!说到植树,大家知道吗?在我们数学王国里植树可是有一定的学问的。这节课我们就来探讨植树问题。”(板书:植树问题)

二、自主探究,构建模型

师:“春天到了,为了美化校园,我们学校也要植树,想当环境设计师吗?看看具体要求。”(出示课件7、8)

1、设计不同方案

师:“画一条线段表示12米的小路,你想怎么载就用示意***或线段***画出来吧!”教师巡视。

2、展示不同方案

投影仪展示学生的设计方案,问:“你是怎么画的?”

师板书三种情况,分别是:两端都栽,只栽一端,两端都不栽。

师:“今天这节课我们先来探讨两端都栽的情况。”

3、小组探索、加强体验

(1)提出问题

出示例1(课件9)学生默读题目,找出关键词并做解释。

师:“需要多少棵树苗呢?”指名说出不同的.答案并板书。

师:“现在出现了3种不同的答案,而且每种都有不少的支持者,到底哪种答案对呢?”小组讨论,并说出理由。

(2)验证猜想

演示课件9师:“我们用这条线段表示这条路,两端都种,先在头上栽一棵,再一棵一棵的栽……这样栽下去,你有什么感受?”(太麻烦)“老师也有同感,其实像这种比较复杂的问题,在数学上还有一种更好的研究方法,想知道吗?就是将复杂问题简单化,在这里100米太长了,我们可以先在短距离的路上种种看。”(出示课件10)

分组画出不同路长的栽法,小组展示栽的棵数。师“为什么这么画?”

(3)总结规律

小组内填写表格,观察:“你发现了什么规律?”板书规律

“刚才通过画***知道了棵数,能不能通过计算得到呢?”

师:“根据刚才发现的规律你知道例1的答案了吗?会列式计算吗?”(出示课件11)

4、运用规律

(1)现在我们的小手的5个手指看成5棵树,你能说说今天发现的规律吗?同桌相互说一说。

(2)出示课件12“比一比谁的反应快” 在两端都栽的情况下,有8个间隔共要种几棵树?有10个间隔共要种几棵树?如果已种了6棵树有几个间隔?如果已种了10棵树有几个间隔?

三、巩固应用,内化提高

师:在日常生活中,在我们周围有许多类似于植树问题的现象小明就在不同的地方找到了,咱们来看看吧。

1、公共汽车上(出示课件13)

2、公路上(出示课件14)

3、上楼梯(出示课件15)

4、钟表上(出示课件16)

引导:师边模仿钟响边板书,学生击掌感受第一响与第二响之间有间隔。

四、回顾整理,反思提升

师:通过今天的学习,你有什么收获?

“对!今天你们发现了植树问题中的重要规律,我们是怎么得到的?”“你还学到了什么方法?”(复杂问题简单化)

“收获方法比收获知识更重要,祝贺大家!”

板书设计:

植树问题

两端都栽

棵数=间隔数+1

间隔数=路长÷间距

路长=间隔数×间距

100÷5+1=21(棵)

植树问题教案2

【教学内容】:

人教版四年级下册第120页第八单元例3

【教材分析】

本次教学内容属于第二学段中“实践与综合应用”领域的教学。

“课标”中要求这部分内容教学时,“应引导学生从不同角度发现实际问题中所包含的丰富的数学信息,探索多种解决问题的方法,并鼓励学生尝试***地解决某些简单的实际问题。”同时建议“数学教学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳等活动,获得基本的数学知识和技能,进一步激发学生的学习兴趣”。

根据课标的要求,又考虑到前两个例题都是围绕植树这一情境展开的,因此我将教学内容由“围棋盘的最外层每边都能放19个棋子,求围棋盘最外层一共可以摆多少个棋子”的问题改为为学校设计花坛,在古柳周围正方形台面上摆花。激发学生学习兴趣的同时培养学生为学校贡献力量的集体主义意识。

【学情分析】

学生已经初步接触了植树问题,会解决在一条线段中的植树问题,了解了栽的棵数与间隔数的关系。本课主要研究封闭***形上的植树问题,如何让学生建立起封闭植树和线段植树的联系,在头脑中建立解决此类问题的模型是教学的重点。

学生对动手操作、自主设计等教学活动比较感兴趣,因此我创设了为学校设计花坛的情境,设计了自主探究、小组合作等教学环节,来调动学生学习的积极性。

【教学目标】

1.利用信息技术平台,提供问题情境,让学生通过生活中的事例探索、掌握解决封闭***形中植树问题的方法。

2.通过多媒体课件,渗透数形结合思想,引导学生在解决问题的分析、思考过程中,经历抽取出数学模型的过程。

3.在解决问题中,培养学生的***思考、合作探究的能力,体会数学在生活中的广泛应用。

【教学重、难点】

教学重点:让学生掌握解决封闭***形植树问题的思维方法。

教学难点:探索发现封闭***形情况下棵树与间隔数之间的关系。

【教学设想】

本次教学内容为请学生扮演设计师角色为学校设计不同形状的花坛,学生对此内容感兴趣,对动手设计等教学环节比较感兴趣,课堂气氛应非常活跃。学生在思维的碰撞中能够自主探究出封闭***形中植树问题的解题方法,并从中发现问题中存在的一般规律。最终达到能运用知识解决实际问题的目的。

【教学过程】

一、创设情景,引入问题

1.播放花坛中由鲜花拼摆出的不同形状的***案,学生欣赏***片,从中感受到鲜花排列的整齐特点。

2.进而教师提问:想不想用鲜花设计属于自己的花坛?今天这节课大家就来设计一个自己喜爱的花坛来装饰校园。

3. 出示问题一:古柳周围正方形台面要摆花,边长是9米,每隔一米摆一盆,请大家帮助算一算,只摆其中一边需要多少盆花?

4. 组织学生反馈::9÷1+1=10盆

小结:同学们用以前学习的植树问题帮老师解决了这个数学问题。

5.出示问题二:如果古柳周围的正方形台面四周都要摆上10盆花,一共需要多少盆花呢?

预设生1:40盆,生2:36盆。

5.提出建议:到底是36盆还是40盆,要知道哪个答案是对的,老师建议大家用画一画的方法来验证一下到底是需要多少盆。

〖通过展示生活中常见的花坛中鲜花组成的***案,结合生活实际创设装点校园的情境,激发学生学习兴趣,调动学生学习的`主动性。引出生活中的数学问题,激发学生探究欲望。〗

二、多元表征,感知模型

1.出示学习建议:

(1)请利用老师提供的材料,在纸上画一画,圈一圈。并写出算式。(花盆可以用符号表示)

(2)画好后先***思考,再在小组中说一说你的方法。

〖把学习的主动权交给了学生,放手让学生想一想、画一画、说一说,激活学生已有的生活经验,既满足了学生的表现欲望,又培养了学生自主探索、小组合作学习的意识。〗

2.组织反馈:你是怎么想的?由学生介绍自己的想法和列式。(先把学生的四种方法都用投影展示出来,再讲评每一种方法)

预设:生1:10×2=20,8×2=16 20+16=36;生2:9×4=36;生3:8×4+4=36;生4:10×4-4=36; 〖通过多媒体投影直观展示学生思维过程和解决方法,激发学生探究欲望。〗

3.回顾方法:刚才我们这四种方法解决了问题。(课件动态演示)

〖通过信息技术动态展示不同的解题策略,引导学生从不同之中找到相同点,将各种算法统一起来,散而不乱,达到了多样化之后的优化,让学生经历多元表征,充分感知数学模型,实现了信息技术与教学内容的整合。〗

小结:通过同学们的认真思考,利用已有的知识与经验探索出了这四种不同的策略来解决了同一个数学问题。

三、探索规律,有效建模

1.延续情境,提出问题:除了给古柳树周围正方形的台面摆鲜花外,学校还想再建一个大花坛,其中需要把红色太阳花摆在三角形台面上(每边6盆),把粉色的月季花摆在六边形的台面上(每边4盆),请你算一算各需要多少盆。)

每边6盆,一共要多少盆?每边4盆,一共要多少盆?

2.组织反馈:你是怎么算的?(结合***说明算式的意思)

3.组织讨论:仔细观察这些算式,告诉我们这些封闭***形上每边摆花的盆数,求花盆总数可以怎么求呢?

小结:我们将正方形,三角形,六边形等***形作为研究的材料,发现了在这样的封***形上植树的棵数就是(每边盆数-1)×边数=盆数

4.拓展练习、提出问题:圆形花坛一周全长16米,如果沿着圆坛一圈每隔2米放一盆花,一共需要几盆花?

学生利用材料自主探索。

5.组织交流评价:一共种几棵?你是怎么想的?你觉得在圆上放花有规律吗?有什么规律?你还有什么新的发现?(投影展示学生的设计方案,引导学生将在圆坛上摆花的问题和线段上的植树问题联系起来)

小结:花盆数=间隔数

〖组织学生利材料自主设计,并进行交流讨论,充分展示学生的思维过程,在思维碰撞中学生们认识到在圆坛上摆花的问题可以和线段上的植树问题联系起来,轻松地找到了新旧知识的结合点。〗

6.提升:在三角形、正方形、正六边形上摆花盆的总数与间隔数是不是也具有这样的关系呢?

(1)学生利用材料自主探索

(2)组织交流反馈

(3)动态演示:将这些***形拉伸为圆,并转化为线段。

小结:其实在所有封闭***形上,都具有花盆数=间隔数这样的关系。所以我们要求花盆总数,可以先求出间隔数。

〖通过电脑动画的演示,学生可以直观地发现所有的封闭***形植树问题都可以转化为在圆上的植树问题,并且有和***段上一端栽树的情况一样。这样,又一次沟通了各个封闭***形之间的联系,轻松突破的本课难点。〗

四、拓展提升,实践应用

1.学校为了美化校园环境,引进了60盆花,如果想在学校门前的空地上摆出一个漂亮的***案,可以怎么摆?请和大家说说你的设计方案。

2.组织学生汇报。

3.小结

通过今天这节课的学习,你有什么收获?

植树问题教案3

教学内容:

人教版小学数学四年级下册第八单元《数学广角--植树问题》

教材分析:

植树问题是人教版四年级下册数学广角的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法化归思想,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。

学情分析:

从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

教学目标:

1.知识与技能性:利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。 了解同一直线上植树问题的三种基本情况,能阐述不同情况下棵数与间隔数的关系。通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。 能够借助***形,利用规律来解决简单植树的问题。

2.过程与方法:进一步培养学生从实际问题中发现规律,应用规律解决问题的`能力。 渗透数形结合的思想,培养学生借助***形解决问题的意识。 培养学生的合作意识,养成良好的交流习惯。

3.情感态度与价值观 :通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

教学重点:

引导探究、发现两端都栽时棵数与间隔数之间关系。

教学难点:

运用棵数与间隔数之间的关系,解决逆向思维的实际问题。

教学方法:

植树问题虽然是日常生活中常见的生活现象,但对四年级的学生还是有很大的难度。美国教育家杜威说过:教育不是告知和被告知的事情,而是学生主动性建设的过程。因此教学中我让学生在动手实践中找方法--在方法中找规律在规律中学应用。

教学过程:

一、创设情境,引入课题

1.我以学生的小手为载体引入本课

【以学生身体的一部分为游戏主体,充分调动学生的参与积极性,利用学生的表现欲望和爱玩的天性,使学生对要学的内容产生好奇心理,顺利解决植树问题中的间隔含义,同时让学生在生活实例和亲身实践中,直观地感受一一对应的数学思想。】

2.3月12日植树节对学生进行环境教育。

通过创设生动有趣的情境,激发学生的求知欲望,顺利过渡到第二个环节。

二、探索规律建立模型

先出示引例:同学们在全长20米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?

指导学生读题

1.从题目你们知道了什么?(说一说)

2.题目中每隔5米栽一棵是什么意思?

3.题目中有什么地方要提醒大家的吗?(一边,两端要栽)

4.一共需要多少棵树苗?你能自己想办法找到问题答案吗?有困难的同学可以借助线段***画一画。

5.交流。

6.反馈。

(1)请你们两人把你们的方法写到黑板上展示给大家看看,好吗?

(2)学生分别说想法。使学生明确:间隔数+1=棵数。

三、巩固练习实际应用

在这一环节我还原例1,让学生解决

四、回顾整理反思提升

1、我会填,让学生现一次巩固总长,棵数,间隔数之间的关系。研究两端都种的情况。如果路长是10米、15米、25米、30米,每隔5米种一棵(两端都种),各要种多少棵树呢?先想一想,再用一条线段表示小路画一画,验证一下! 每隔5米种一棵(两端都种) 路长(米) 画一画 间隔数 棵数

每隔5米种一棵(两端都种)

路长(米) 画一画 间隔数 棵数

(1)反馈交流:可以种几棵?你是怎么种的?

(2)观察比较表格中的数据,有什么发现?小组内交流自己的发现。

(3)全班交流汇报,引导学生概括规律(板书规律)。

两端都种时: 棵数=间隔数+1

间隔数=总长间隔

2、我会算,设计两旁都要栽的练习。出示119页做一做

3、智力大比拼,通过两端都要栽的情况顺理成章地使其明白另外两种植树问题。联系生活,完善建构。

(1)感知植树问题的三种模型。

看课件三种情况。(两端种、两端都不种、一端不种)

(2)想一想,生活中有类似这样的植树问题吗?请举例说一说!

课件出示例2(两端不种)

【数学来源于生活,而又服务于生活。在学生初步感知植树问题基础上,引出另外不同的种法,创设与学生的生活环境和知识背景密切相关的、学生感兴趣的、以便能更好的理解与植树问题有关的生活题型,让学生在具体生活中理解数学现象,并运用规律解决形式各异的生活问题,使学生深深地体会到数学的价值与魅力。】

4、应用模型,解决问题(植树问题并不只是与植树有关,生活中海油许多现象和植树问题相似。)如

(1)垃圾箱问题. 为净化环境,公园沿一条600米长的小路一侧设置垃圾箱,每隔30米放一个(路的一头不放),一共需要多少个垃圾箱?

(2)一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

(3)学校召开秋季运动会,在笔直的跑道一旁插彩旗。跑道全长100米,每隔2米插一面(两端都要插)。需要多少面彩旗?

(4)在全长20xx米的街道两旁安装路灯(两端也要装)。每隔50米安一座,一共要安装多少座路灯? 指名读题,引导学生理解题意后***解题。教师追问思考过程。

(5)园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离是多远?

(6)广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间? 【练***扣中心,拓展情境,让学生运用规律***解决简单的实际问题,。这样不但巩固了新知,而且完成了建构,更重要的是训练了学生的多向思维。】

五、回顾整理反思提升

1、谈谈这节课的收获。

【如此设计是基于学生的思维状态,引导学生说说对这部分内容的学习收获,进一步深入总结,给学生留有回味和发展的空间。】

2、只要我们细心观察,生活中还有更多更有挑战性的问题等着我们去解决,比如小朋友们排队,如果排成个圈儿,棵数与间隔数之间会藏着怎样的秘密呢?就留给大家课后去思考吧!

植树问题教案4

教学内容:义务教育课程标准实验教材四年级下册《植树问题》,117页例1。

教学目标:

1. 使学生通过生活中的事例,初步体会解决植树问题的方法。

2. 初步培养学生从实际问题中探索规律,找出解决问题的有效方法 的能力。

3. 让学生感受数学在日常生活中的广泛应用,培养学生的应用意识 和解决问题的能力。

教学重点:用解决植树问题的方法解决实际问题。

教学难点:栽树的棵数与间隔数之间的关系。

教具准备:多媒体课件。

设计理念:新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

教学过程:

一、谈话导入:

师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔一定的距离植树,这就需要计算准备多少棵树苗。还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

二、揭示学习目标:(媒体出示)

通过这节课的学习,我们要解决哪些问题呢?

1. 能根据相关条件,求出需要多少棵树苗或计算两树间的距离。

2. 能利用植树问题,灵活解决生活中类似的实际问题。

三、探究新知:

1. 出示例1:同学们在全长100米的.小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)

师:你会计算吗?(让学生回答)你算的对吗?请同学们自己动脑来验证一下。

学习提示:(媒体出示)

①假如路长只有10米,要栽几棵树?如果路长是二十米,又要栽几棵树?请你画线段***来看看。(注意看***上有几个间隔和几个间隔点)

②通过上面的分析,你能找出什么规律?和同桌或小组内说说。

③现在你能算出一共需要多少棵树苗吗?

④你还有别的想法吗,在小组内说说。

2. 学生自学探讨。(师巡视)

3. 班内交流。学生回答后,师媒体演示间隔数和间隔点数的关系。

总结规律:栽的棵数比间隔数多1。

完成例题。

四、变化巩固:

1. 做一做:118页学生***完成。订正时说说怎么想的,重点让学生明确先求出间隔数,即36棵树有35个间隔。

2. 122页第2题。***完成,同桌交流想法,可一生板演。

五、检测反馈:(***完成)

1. 在一条长四百米的马路的一边,从头到尾每隔8米种一棵树。一共可以种多少棵树?

2. 5路公共汽车行驶路线全长十二千米,相邻两站的距离是一千米。一共有几个车站?

3. 从王村到李村一共设有十六根高压电线杆,相邻两根的距离平均是两百米。王村到李村大约有多远?

学生完成后师批阅订正,发现问题及时解决。

六、总结延伸:这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的情况,希望大家开动脑筋,灵活处理。

植树问题教案5

教学目标

1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;

2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力;

3.让学生感受数学在日常生活中的广泛应用。

教学重难点

教学重点:

从封闭曲线(方阵)中探讨植树问题。

教学难点:

用数学的方法解决实际生活中的简单问题。

教学过程

一、复习旧知,情境导入(课件出示)

(1) 在100米的小路边,每隔5米种一棵柳树,两端都要种,一共种了多少棵?

(2) 校园***书馆和体育馆两栋楼之间长40米,每隔4米种一棵柏树,一共种了多少棵?

师:(第一题)1000÷20求的是什么?为什么要加1?(两端都栽:棵数=间隔数+1)

师:40÷4求的是什么?又为什么要减1呢?(两端不栽:棵数=间隔数-1)。让学生说出每个算式所表示的意义。

你能说说棵数与间隔数之间的关系

二、探索新知。

1、圆形花坛的一周全长12米,如果沿着这一圈每隔2米摆放一盆花,一共需要多少盆花?

板书课题:封闭***形的植树问题

2、运用规律。

圆形花坛的一周全长12米,如果沿着这一圈每隔2米摆放一盆花,一共需要多少盆花?

(1)引导学生读题,理解题意。***完成。

(2)理解圆形的株数与间隔数相等,

列出算式:12÷2=6(盆)

3、课件出示一个圆形,在圆形的花坛上种树,棵数=间隔数

4、发现规律:在圆形的花坛上种树,棵数=间隔数 。

圆形花坛的一周全长50米,如果沿着这一圈每隔2米摆放一盘花,一共需要多少盘花?

5、学习例题:

(1)课件出示例题。例:在围棋的每边都放19个旗子,最外层一共可以放多少个旗子? (2)生读题,***列出算式

学生小组合作,寻求解决问题的方法。学生自主探索会出现如下几种方法:

方法1:直接点数出最外层一共可以摆放72个棋子。

方法2:列式:19 ×2+(19-2)× 2=72(个)

方法3:列式:(19-1)×4=72(个)

方法4:列式:4+(19-2)×4=72(个)

方法5:列式:19×4 - 4=72(个)

以上方法,教师引导比较:除方法1外,其余算法都抓住了4个角上的棋子不能重复计算的关键点。

6、探究规律。

(1)首先理解封闭***形

围棋盘的最外层是一个正方形,像这样首尾相连没有开口的***形就是封闭***形。(课件出示)

(2)提问:

我们学过的封闭***形有哪些?根据学生的回答课件出示部分学过的封闭***形。学生任选一个,用小圆点代替棋子在封闭***形中画一画,数一数,想一想,会有怎样的发现?

(3)引导学生运用数形结合思想寻找规律,学生交流说出:棋子数=间隔数的结论。

提问:这和我们学过的哪种植树情况一样呢?(帮助学生进行新旧知识的链接,迁移到一端栽一端不栽的植树情形。)这是巧合吗?想不想继续研究?

学生研究发现 :如果将画好的封闭***形沿着一圆点断开拉直就变成一端栽一端不栽的植树问题模型,利用原理逆向思维再次验证棋子数=间隔数这一规律。

(4)回到原题:围棋盘最外层每边有19个棋子,即每边有(19-1)个间隔,4边共有18×4=72(个)间隔。因为最外层的棋子数=间隔数,所以72个间隔也就说明有72个棋子。

列式:(19-1)×4=72(个)

(5)请一学生板演,并说出每个算式所表示的意义 19-1=18(段) ----表示19个旗子有18段间隔 18×4=72(个)----表示最外层的'总数

答:最外层一共可以放72个旗子。

(6)引导学生说出公式: 最外层的总数=(每边的棵树-1)×边数

7、运用规律解决问题。

(1)摆棋子:一个四边形,每个顶点都摆一个。

(2)如果最外层每边能放100个,最外层一共可以摆放多少个棋子?

设问:100-1求的是什么?乘4呢?(为什么要乘4?)

(3)如果最外层每边能放200个,最外层一共可以摆放多少个棋子?

(4)如果在一个正五边形的边上摆,怎么算?一个三角形呢?

小结:看来,在封闭***形中的植树,只要先求出每边间隔数,再乘边数就可以求出最外层的总棵树。但是要注意在求每边间隔数时,要用棵数减1,你知道为什么吗?

8、摆花盆:完成做一做第2题 问题:

沿正方形的池塘边植树,要求每边都植4棵,一共需要多少棵树苗?

三、巩固延伸

解决问题:

1、沿一个正三角形实验田的外边,每边种8棵向日葵最少能种几棵?

2、16名学生在操场上做游戏,围成一个正方形,每边人数相等。四个顶点都有人,每边各有几名学生?若相邻两个同学之间相隔1米,围成的正方形的边长是多少米?

课后延伸题

1、“四(4)班”召开班会时,同学们围坐在一起,如果每边做5人,(如下***),这个班一共有多少个同学?每边都有5张课桌,一共要多少张课桌子?

2、公园里的花坛有以下几种形状,请选择一种你最喜欢的形状,计算一下如果每边放4盆花,至少一共可以摆放多少盆花?

四、全课小结 师:同学们,马上就要下课了,这节课你又收获吗?一起来分享分享吧? 封闭***形的植树问题,株数=间隔数

最外层总数=间隔数×边数

五、作业布置

教材122页的第4、6、7、8题

植树问题教案6

教学内容:人教版义务教育课程标准实验教材四年级(下册)第117---118页例1、例2。

教学目标

1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。

2.使学生经历和体验“复杂问题简单化”的解题策略和方法。

3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

一、谈话引入,明确课题

母亲节刚过,我们马上又要迎来一个快乐的节日──“六·一儿童节”,这也是全世界少年儿童共同的节日。其实,一年中有意义的日子还有很多,你还知道哪些?能说几个吗?(生说)

大家知道3月12日是什么日子吗?(植树节)你参加过植树活动吗?植树不仅能美化环境,净化空气,而且植树中还有很多数学问题。今天这节课,我们就一起来研究“植树问题”。(板书课题:植树问题)

二、引导探究,发现“两端要种”的规律

1.创设情境,提出问题。

①课件出示***片。

介绍:这是我县新修的一条公路。公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?

出示题目:这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?

②理解题意。

a.指名读题,从题中你了解到了哪些信息?

b.理解“两端”是什么意思?

指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?

说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。

③算一算,一共需要多少棵树苗?

④反馈答案。

方法一:1000÷5=200(棵)

方法二:1000÷5=200(棵)200+2=202(棵)

方法三:1000÷5=200(棵)200+1=201(棵)

师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画***模拟实际种一种?如果从***上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?

2.简单验证,发现规律。

①画***实际种一种。

课件演示:我们用这条线段表示这条绿化带。“两端要种”,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去......

师:大家看,已经种了多少米?(45米)这么长时间才种了45米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)

师:老师也有同感,一棵一棵种到1000米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看。大家想不想用这种方法试一试?

②画一画,简单验证,发现规律。

a.先种15米,还是每隔5米种一棵,画***种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3段4棵)

b.跟上面一样,再种25米看一看,这次你又分了几段,种了几棵?(板书:5段6棵)

c.任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?

(板书:2段3棵;7段8棵;10段11棵。)

d.你发现了什么?

小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:

(板书:两端要种:棵树=段数+1)

③应用规律,解决问题。

a.课件出示:前面例题

问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?

1000÷5=200这里的200指什么?

200+1=201为什么还要+1?

师:这个“秘方”好不好?

通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?

b.解决实际问题

运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生***完成。)

问:这道题是不是应用植树问题的规律解决的?

师:看来,应用植树问题的规律,不仅仅能解决植树的.问题,生活中很多类似的现象也能用植树问题的规律来解决。

小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵树用段数+1;如果“两端不种”棵树和段数又会有怎样的关系呢?

三、合作探究,“两端不种”的规律

1.猜测“两端不种”的规律。

猜测结果是:两端不种:棵树=段数-1

师:到底同学们的猜测是不是正确呢?我们还是用前面学习的方法,举简单的例子画一画,种一种。

要求:每人先***画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?

2.***探究,合作交流。

3.展示小组研究成果,发现规律,验证前面的猜测。

小结:同学们太了不起了,通过举简单的例子,自己又发现了“两端不种”的规律:棵树=段数-1。如果“两端不种”求棵树,你会做了吗?

4.做一做。

①在一条长20xx米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(学生***完成)

②师:同学们注意看,这道题发生了什么变化?

课件闪烁:将“一侧”改为“两侧”

问:“两侧种树”是什么意思?实际要种几行树?会做吗?赶紧做一做。

小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数-1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。

四、回归生活,实际应用

1.一根木头长8米,每2米锯一段。一共要锯几次?(学生***完成。)

8÷2=4(段)

4-1=3(次)

问:为什么要-1?这相当于今天学习的植树问题中的那种情况?

2.我们身边类似的数学问题。

①看,这一列共有几个同学?(4个)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?如果这一列共有10个同学呢?100个同学呢?

②这一列还是4个同学,如果每相邻两个同学之间的距离是2米,从第一个同学到最后一个同学的距离是多少米呢?

3.在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?

五、全课总结

通过今天的学习,你有哪些收获?

师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,有兴趣的同学,课下可以查阅有关的资料继续研究。

植树问题教案7

教学目标:

1、建立并理解***段上植树(两端都不栽)的情况中“棵数=间隔数—1”的数学模型。

2、通过画线段***初步培养学生探索解决问题的有效方法的能力,尝试用植树问题的模型解决实际生活中的简单问题,培养应用意识。教学重点:建立并理解“棵数=间隔数—1”的数学模型。教学难点:培养学生探索解决问题的.有效方法的能力。

教学准备:

课件。

教学过程:

一、创设情境,导入新课:

师:同学们,你们参加过招聘会吗?

生:没有。

师:想不想拥有这样一次经历?

生:想。

师:瞧,老师带来了一份招聘启示。(课件演示)

招聘启示:

新兴学校将对校园进一步绿化,特聘请校园设计师一名。要求设计植树方案一份,择优录取。

师:愿意试试吗?我们先来看看设计有什么要求。(课件演示)

为了美化环境,要在的一条60米长的小路一边植树,每隔3米栽一棵,需要准备多少棵树苗呢?。

说一说,你们打算怎样植树?

师:哪位同学愿意来说说你的想法?

学生汇报讨论结果

生1:两端都栽。

生2:头栽尾不栽。

生3:尾栽头不栽。

生4:两端都不栽。

师:从这份要求上,你能获得哪些信息?

生:路全长有60米,只在路的一边栽,每隔5米栽一棵。

师:两端都栽要栽多少棵?这节课我们来研究两端不栽的植树问题。

二、民主导学:

任务呈现:

大象馆和猴山相距60 m。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3 m。一共要栽多少棵树?

1、你都知道了什么?

2、你认为一共要栽多少棵树?

师:这道题和上节课学的植树问题有什么不一样呢?

提示:小路的两端都是场馆,还需不需要栽树呢?还有需要注意的吗?到底要栽几棵,我们还是用前面学习的方法,举简单的例子(9米、12米、15米、21米)画一画,栽一栽?

自主学习:

小组四人每人选一个长度,间距还是3米,来画一画,填一填。展示交流:

师:大家发现棵数和间隔数有什么关系?间距、间隔数和总长有什么关系?

生:棵数=间隔数—1

间距×间隔数=总长

讨论:在两头都不种的情况下,棵数为什么会比间隔数少1呢?师:那大象馆和猴山间栽多少棵数?

60÷3=20(个)

20—1=19(棵)

19×2=38(棵)

教师追问:为什么要“×2”?(因为小路两旁都要栽树)

师:大家在做题的时候,一定要判断是“两端要栽”还是“两端不栽”。

三、检测导结:

师:在刚才的学习过程中,同学们既发现了规律,又总结了方法,真了不起。老师这里有几道题,把明明难住了,我们来帮帮他。

1、目标检测:

一、填一填

1、一排同学之间有7个间隔,第一排有()个同学。

2、小红住的楼房每上一层要走20个台阶,从二楼到四楼要走()个台阶。

二、算一算

1、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米,一共有几个车站?

2、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵有多少米?

3、一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

2、结果反馈:

3、反思总结:

师:通过今天的学习,大家有哪些收获?

学生畅谈收获。

师:同学们的收获真不少!通过今天的学习,我们不仅发现了植树问题中两端都栽和两端不栽的规律,而且还学会了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的问题还有一端栽一端不栽,下节课继续研究!

植树问题教案8

教材分析

本册教材的数学广角主要是渗透有关植树问题的方法。它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。本课时是本单元的第2课时,是探讨关于一条线段并且两端都不栽的情况。

“两端都不栽”与“两端都栽”的区别是比较明显的,可以借助线段***帮助学生建立两者的表象,再正确建立数学模型。

教学目标

1、建立“树的棵数=间隔数-1”的数学模型;能利用数学模型解决简单的实际问题。

2、在解决问题的过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的`方法。

3、 体会数学模型的生活意义与作用,体验到学习的喜悦。

学习重点:建立“树的棵数=间隔数-1”的数学模型。

学习难点:“两端都不栽”与“两端都栽”有什么联系与区别。

预设过程

一、复习两端都栽

在一条12路的一侧种树(两端都种),每2米种一棵,共需种几棵?

1、揭题:植树问题。

2、呈现问题,请学生解决。新课标第一

3、反馈解法,强调“两端都种”与“间隔数+1”。

二、研究两端都不栽

在一条12路的一侧种树(两端都不种),每2米种一棵,共需种几棵?

1、提出研究课题:要是两端都不种呢?

2、呈现问题,请学生思考后试解。

3、反馈解法,强调“两端都不种”与“间隔数-1”。

4、比较:“两端都种”与“两端都不种”有什么不同?

三、练习

1、画示意***,完成P118例2,注意“两端都不种”与“两旁都种”。

2、画示意***,完成做一做1,注意“两端都种”与“两旁都种”。

3、画示意***,完成做一做2,发现“锯的次数=段数-1”。

4、完成补充题,知道“四层楼三个间隔”。

四、

植树问题教案9

1、重视知识的迁移和转化。

知识迁移法就是利用新旧知识间的联系,启发学生进行新旧知识对照,由旧知识去思考、领会新知识,学会学习的方法。上节课我们已经学习了两端栽树时的间隔数与棵数之间的关系,掌握了两端栽树的解题方法,为本节课的学习打下了基础。学生已经发现了“两端栽树”的规律,这时老师提出如果两端都不栽树,棵数和间隔数之间又会有怎样的规律呢?有了前面学习的基础,学生的思维非常活跃,想表达的欲望也很强烈。通过动手操作,形成知识的迁移和转化,引导学生发现并总结规律,让学生的研究成果被认可,让学生有成就感,从而也增强了学生学习数学的信心。

2、重视***探究与合作交流相结合。

《数学课程标准》明确指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。”有了前面的学习基础,先放手让学生***探究,再合作交流。通过简单的例子验证前面的猜测,发现两端都不栽树的规律。在这个过程中,学生对复杂问题从简单入手的数学思想又有了更深刻的体验。

课前准备

教师准备PPT课件学生准备直尺教学过程

⊙对比引入,揭示课题

1、出示复习题:在一条60 m长的小路的一旁栽树,每隔3 m栽一棵(两端都栽),一共要栽多少棵树?

(1)要求学生说一说自己是怎样解决这个问题的。(指名汇报)

(2)对于两端都栽的植树问题,棵数和间隔数之间有怎样的关系?你能用一个式子表示它们之间的关系吗?(指名回答:棵数=间隔数+1)

2、引入新课。

师:同学们对于上节课的知识掌握得非常好!如果老师把上题改为:在一条60 m长的小路的一旁栽树,每隔3 m栽一棵(两端不栽),一共要栽多少棵树?

(1)想一想,这道题与上一道题相比较,有什么变化?

(2)说一说你是怎么理解“两端不栽”的。(学生思考后自由汇报)

师:这节课我们就来研究一下“两端不栽”的植树问题,看一看棵数与间隔数之间有怎样的关系。(板书课题)

设计意***:让学生在熟悉的'情境中借助已有的知识经验开展学习,充分调动学生学习的积极性,让学生在不知不觉中进入学习环境。

⊙合作探究,发现规律

1、从简单的数据分析,发现两端不栽的规律。

(1)教师引导学生用画线段、摆***形、摆小棒等自己喜欢的方法在小组内研究,并完成下面的表格。

(2)填写完后在小组内交流一下,你是用什么方法进行验证的?从这个表格中你发现了什么规律?(生自由汇报:两端不栽,棵数比间隔数少1或间隔数比棵数多1)

设计意***:学生是学习的主人,设计丰富的探究活动,采用多样的学习方式,引导学生主动参与探究的过程。教师放手让学生想一想、画一画、说一说,既满足了学生的表现欲望,又培养了他们自主探究的意识。教师恰当地向学生渗透“遇到比较复杂的问题先想简单的问题,从简单的问题入手来研究”这一数学思想。

2、自主学习,应用规律解决教材107页例2。

(1)课件出示教材107页例2:大象馆和猴山相距60 m。绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3 m。一共要栽多少棵树?

①认真读题,分析题意,说一说自己发现的数学信息。 ②***思考,怎么解决。 ③组内交流,确定方法。(2)交流汇报。

师:请各小组把自己的解决方法介绍给大家,看哪个小组的最合理?①各小组汇报自己的算法。

方法一60÷3=20(棵)20+1=21(棵)方法二60÷3=20(棵)20+1=21(棵)21×2=42(棵)方法三60÷3=20(棵)20-1=19(棵)19×2=38(棵)

②讨论哪种方法最合理。(学生讨论后汇报,重点说明“两旁”要乘2)3、总结规律。

师:从前面的分析中你发现了什么规律?能用一个式子表示出来吗?(根据学生的汇报板书:棵数=间隔数-1或间隔数=棵数+1)师总结:在生活中,有这种规律的数学问题叫做两端不栽的植树问题。

设计意***:如果说生活经验是学习的基础,学生间的合作交流是学习的推动力,那么本环节将“发现规律”与“运用规律”结合起来,通过不完全归纳法验证自己找到的规律,渗透了代数思想。

⊙联系实际,巩固应用

1、教材109页5题。(结合生活实际去分析题意,***解答)2、教材109页6题。(应用规律进行解答)⊙全课总结

同学们,今天你有哪些收获?在应用规律解决问题的时候需要注意些什么呢?⊙布置作业教材110页8题。

板书设计植树问题(两端不栽)

棵数=间隔数-1或间隔数=棵数+1

60÷3=20(个)20-1=19(棵)19×2=38(棵)

植树问题教案10

教学内容

教科书第106-118页例题。

教材分析

本单元学习的是有关数学广角的“植物问题”,主要探讨的是关于在一条线段植树的问题,只栽一端、只栽中间、两端都栽等。教材以学生比较熟悉的植树活动为线索,让学生选用自己喜欢的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等探索过程,并启发学生透过现象发现其中的规律,再利用规律回归生活,解决生活实际问题。数学的思想方法是数学的灵魂,本册安排“植树问题”的目的就是向学生渗透复杂问题从简单人手的思想。

教学目标

1、理解***段上植树(两端要栽)的情况中“棵数=间隔数+1”,“间隔数=总长×间隔距离”的关系。

2、使学生经历和体验复杂问题简单化的解题策略和方法。

3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

教学重点

引导学生发现植树棵树与间隔数之间的关系。

教学难点

理解间隔与棵树之间的规律并运用规律解决问题。

教学准备:

多媒体课件、学具

课时安排:

1课时

教学过程

一、教学“间隔”

1、教学“间隔”的含义。

师:同学们,在我们的身边到处有数学。你们喜欢猜谜语吗?老师让你们猜个谜语好不好?出示谜面:(打一  我们在排队时,也出现了间隔数与人数之间的某种关系。下面,请几位同学上来排队(先请三人起来排队)问:有几个人?几个间隔?(再增加1人)再问:有几个人?几个间隔?(再增加1人)继续问有几个人?几个间隔?

通过观察同学们刚才排队的情况,你们发现了人数与间隔数之间又有什么关系?(人数比间隔数多1,或者间隔数比人数少1……)

3、引入植树问题的学习。

师:你们真聪明!发现了手指数与间隔数之间的关系,队列中间隔数与人数之间的关系。像这类隐藏着总数和间隔数之间的关系问题,我们称为植树问题。今天,我们一起来研究有关植树问题。

板书课题:植树问题(两端都栽)。

4、刚才我们谈到的手指和队列的问题都是植树问题,大家能说出生活中的相关实例吗?教师举例:(上课和铃声、整点敲钟报时、美国五年一届的总统选举)

二、引导探究,发现两端要种的规律

1、课件出示问题:同学们在全长100米的`小路一旁植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

让学生读题,理解题意。然后让学生说说这道题的关键词是什么。(每隔5米是指什么,两端要栽……,并重点理解“每隔5米”就是指两棵树之间的距离,也就是间距;两端:也就是这行树的两头)然后教师提问:咱们可不可以画***模拟实际种一种?如果从***上一棵一棵种到100米,数一数,是不是就能知道答案呢?(如果要求同学们通过画***证明,每5米1棵,那究竟要画到什么时候呢?其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,那就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:100米的路太长了,我们可以先在短距离的路上种一种,看一看……?我们可以把这条路看作较短的10米、15米、20米……通过画***得出规律,再根据规律求100米路要植树的棵数),这是在我们数学上常用的一种方法叫做“花繁为简法”。

2、简单验证,发现规律。

①简单验证,发现规律。

学生实践记录单

出示实践记录单后,教师先示范画线段***,并***段***上标出“间距,间隔数,线路总长”等,让学生更进一步理解“线路总长、间距、间隔数”。

同学们在全长10米的小路一边植树,每隔5米种一棵。(两端要种)一共需要多少棵树苗?

b、在长15米的小路一边植树(两端要栽)每五米一棵,可植多少棵?(线段***),学生通过画***探究,逐渐对总长、间隔距离、间隔数之间的关系进行进一步建模。

c、在长20米的小路一边植树(两端要栽),每五米一棵,可植多少棵?那么在长25米和30米的小路上呢?

(1)学生自主活动,完成实践记录单。(学生完成这个表格后,教师展示学生完成情况并提问:怎样求间隔数?怎样求棵数?学生回答,教师板书)

全长(米)10 15 20 ┉

间距(米)5 5 5 ┉

间隔数(段)

棵树(棵)

(2)观察表中的棵数和间隔数,你发现了什么规律?(板书:两端要种:棵数=间隔数+1或间隔数=棵数—1),全班齐读规律。

②应用规律,解决问题

教师:应用这个规律,我们能不能解决例1的问题?(全班学生***完成)订正时教师提问:100÷5=20这里的20指什么?(间隔数)20+1=21为什么还要+1?(因为两端要种的棵数=间隔数+1)刚才我们通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵数,知道该怎么做了吗?

3、解决实际问题(口答)

①教师说间隔,学生说棵数。(或者教师说棵数,学生说有几个间隔。)

②小组内各同学互相出题。

小结:

刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,两端要种:棵数=间隔数+1,如果知道了间隔数和间距(每两棵树的距离),怎样求总长呢?(引导学生说出:总长=间隔数×间距(板书)

4、完成“做一做”

园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?(先让学生说一说这道题中的间隔数是多少,间距是多少,再让学生***完成。订正后,教师可再进一步提问:如果在公路的两侧植树,又该怎么做?)

教师:今天我们学习了怎样求植树的棵数,求间隔数,求植树的路线的总长度,解决这几个问题的关键是相同的,就是要运用好段数与点数之间的规律。

三、应用规律,解决拓展

1、植树问题(两端都栽)练习

全路长(米)间隔距离(米)间隔数(个)棵数(棵)

1 30 5

2 50

10

3

4

21

4 1000

101

2、广场上的大钟5时敲响5下,8秒钟敲完。10时敲响10下,需要多长的时间?

3、小明要在全长20m的小路一边植树,每隔5m栽一棵(如下***),请你帮小明设计一下植树方案。(此题留待学生思考,为以后教学只栽一端和两端不栽做铺垫)

四、谈谈你的收获?

学生谈谈收获,教师总结。

五、作业

完成教科书练习

六、板书设计

植树问题(两端都栽)

棵数=间隔数+1

间隔数=棵数-1

间隔数=总长÷间隔距离

教学反思

“植树问题”原本属于经典的奥数教学内容,是一种情况较为复杂的问题,但在生活中有许多类似的原型,新课程教材把它安排在五年级上册第七单元的“数学广角”中。其教学侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,借助内容的教学发展学生的思维,提高学生解决问题的能力。

本节课我教学了课本106-108页例1内容,主要教学两端都栽的植树问题。反思本课教学过程,我觉得以下方面做得比较成功:

一、重视数学模型的建立过程

学习数学的目的是为了应用数学,在应用数学去解决各类实际问题时,建立数学模型是十分关键的一步。建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。因此,我在教学中设计了“形成猜想—化繁为简—合作交流—发现规律—梳理方法—应用规律”的教学流程,意在让学生经历“猜想—验证—建立数学模型—应用”这一过程,从而建立“植树问题”数学模型。

二、注重数学思想的渗透

在教学中,我直接例题导入,引导学生用画***方法模拟实际栽树。让学生体会到研究问题可以从简单入手,化繁为简,用这样的方法,可以有效的解决问题,把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。其次,通过画线段***,渗透了数形结合的思想;在这个过程中,学生通过猜想、实验、推理、交流等活动,既培养了数学思想能力,学会了一些解决问题的方法,又逐步形成实事求是的科学态度和精神。

三、注重探究精神和能力的培养

教学中,我创设情境,鼓励学生用画***的方法来验证猜想的合理性。其后,改变间距,让学生通过画***的方法再次验证,并完成表格,从而发现规律。在用“数形结合”方法探究规律的过程中,学生的动手能力、合作能力和实践精神都得到一定的培养。

四、关注植树问题模型的拓展和应用

植树问题的模型是现实世界中一类相近事件的放大,它源于生活,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,我做了两方面的工作:

一是加强归类,出示生活实例,告诉学生“这些现象的事物间都存在着间隔,把这类问题统称为植树问题”;

二是进行变式练习。引导学生进一步体会,现实生活中的许多事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,从而使学生感悟数学建模的重要意义。

这节课虽然取得了一些收获,但也有许多遗憾。

一是操作的实效性。在学生画***探究间隔数和棵数的规律时,在规定时间内完成任务的小组比较少。这有两方面的原因:首先是我没有充分调动学生动手的积极性,其次是操作方法交待不够清楚,以致部分学生无从下手,出现操作困难,影响操作效果。

二是练习设计不够精。因为希望把尽可能多的题型呈现给学生,所以没有把握好教学时间。因此,在教学中应该把握好教学的度,相信学生的能力,合理取舍教学内容。

植树问题教案11

个人简介:陈智敏,男,30岁,本科学历,小学高级教师,现任乐清市雁荡镇一小副校长。先后被评为乐清市教坛新秀、温州市首届学科骨干教师,两次荣获乐清市先进教育工作者称号。20xx年获得乐清市优质课一等奖,并多次承担温州市、乐清市教研室组织的送教下乡活动、乐清市级公开课教学和新课程专题讲座,所撰写的论文、案例多次在乐清市、省级获奖及发表。

教学内容:人教版实验教材四下P117-P118页《植树问题》例1、例2

教学目标

1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。

2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。

3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

教学重点

理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。

教学难点

应用植树问题的模型灵活解决一些相关的实际问题。

设计理念

新课标实施,数学教材进行了相应的改革,数学思想方法的重要性更为彰显。每册教材通过“数学广角”来进一步渗透数学学习的思想、方法,加强学生综合运用知识的能力,逐步提高解决问题的能力。在植树问题的教学中,解题不是主要的教学目的,主要的任务是向学生渗透一种思想,一种在数学上、在研究问题上都很重要的思想--化归思想。

本课的`设计,主要根据教学内容的特点,及学生的实际情况,引导学生积极参与,通过开放性的设计,让学生在设计植树方案的过程中通过画***亲身体验在三种种植情况下,选择的间隔不同,但棵数与间隔数之间都存在一定的关系。通过学生的体验,建构植树问题的模型,再运用模型解决生活中的类似问题。教学中重在让学生体验知识获得的过程,更注重于培养学生运用所学知识,举一反三,解决实际问题的能力。

教学过程

一、新课导入

1、师:大家知道3月12日是什么节日吗?(植树节)那么今天我们就一起来研究植树中的数学问题。

板书课题:植树问题

二、引导探究

1、创设情境,理解概念

(1)出示:“为了美化环境,学校准备在操场边上的一条100米长的小路一边植树,总务主任需要准备多少棵树苗呢?

(2)理解题意。

a.读题,从题中你了解到了哪些数学信息?有什么问题?

b.理解”间隔“的意思?

C、理解三种种植情况

(两端都种、一端种、两端不种)

2、主动探索,发现规律

(1)计算你的设计需要多少棵树苗?利用画线段***把它表示出来吗?并将植树方案补充完整

植树方案

总长(米)

间隔(米)

间隔数 (个)

棵数(棵)

种植情况示意***

(2)学生反馈

(3)组织讨论:你发现什么规律?

两端都种时,棵数=间隔数+1

一端种是时,棵数=间隔数

两端不种时,棵数=间隔数-1

3、应用规律,解决问题

(1)出示例2:

(2)读题后思考,有什么地方需要提醒同学值得注意的。

(3)学生***解题、反馈

三、回归生活,变式练习

1、封闭***形相当于一端种

(1)出示P122练习二十第4题

圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

(2)讨论:封闭***形相当于植树问题中的哪个类型?

(3)学生***解题,反馈。

2、同时出示两道习题:

(1)锯木头问题(两端都不种)

一根木头,要把它平均分成5段,每锯下一段需要8分钟,锯完一共要花多少分钟。

(2)排列问题(两端都种)

四、欣赏生活中类似于植树问题的事件

生活中的类似于植树问题的――――欣赏

植树问题教案12

教学内容:人教版新课标实验教材,四年级数学下册P120的例3,P121的做一做,练习二十第4、6、7题

教学目标

1、掌握在一个封闭***形中植树问题的解答方法,并能灵活运用这一基本方法解决生活中存在的与“植树问题”类似的实际问题。

2、在探索和解决问题中,体会从简单到复杂的数学推理方法,体验数学学习成功的喜悦,增强学好数学的信心。

教学重难点:掌握封闭***形中“植树问题”的解决方法

教具准备:正方形,围棋棋盘、棋子

教学过程

一、激趣导入

脑筋急转弯:把4棵树栽成4行,每行数数都有2棵?怎么栽?

1、让学生***思考,提示学生可用画***的方法进行思考。

2、全班交流,找出方法,并在正方形上把它表达出来。

3、观察这个***形,你有什么发现?与我们前面学习的植树问题有什么不同?

4、在学生的思考中,导入新课,板书课题:植树问题

二、探索规律

1、教学例3

(1)出示围棋棋盘

数一数

围棋棋盘的最外边每边能放几个棋子?(19个)

(2)算一算

最外层一共可以摆放多少个棋子?

学生先***思考,寻找出自己的计算方法

全班交流,学生叙述自己的算法和结果

方法一:19×4=76(个)

方法二:19×4-4=72(个)

方法三:18×4=72(个)

(3)议一议

全班交流,指名叙述每种方法的理由。

方法一忽略了角上算重的情况,多算了4个。

方法二考虑了4个角上算重了,所以在总数中去掉了多算的4个。

方法三每边都只算一个端点,这样每边有18个,3边正好是6个。

(4)比一比

你用了哪种思考方法,还有其它方法吗?你认为哪种方法最好?

(5)想一想

前面我们已经学习了在一条线段上植树的问题,知道间隔数和棵数之间的关系,那么我们现在来观察一下,围棋最外层摆放的棋子有多少个间隔?学生自主探究:数一数间隔数,指名回答,围棋最外层摆放的棋子数等于最外层每两个棋子的间隔数。

(6)类推

钟面上有几个数?想一想:钟面上每两个数之间有几个间隔?一个五边形有几个顶点?如果在五边形的水池边摆上花盆,使每一边都有5盆花,最少需要多少盆花?

(7)归纳规律

与前面学习的内容比较及在练习中你发现了什么?即封闭的***形的“植树问题”有什么规律?组织学生讨论,在学生回答的基础上总结出:植树的棵数正好等于间隔数。

2、解决问题

(1)补充习题:24名学生做游戏,大家围成一个正方形,每边人数相等,四个角上都有人,每边各有几名同学?

(2)学生自主探究或和同伴交流,教师巡视指导后进生用画***的`方法帮助理解。

(3)集体交流,指名学生说出算理。

(4)教师有针对性地进行指导,并启发学生以每边人数求总人数的方法进行验证。

三、巩固练习

例3后面的“做一做”

四、课堂小结

今天我们学习的是封闭***形内的“植树问题”。你发现了什么规律?

五、作业布置:

练习二十第4、6、7题。

教学反思

一、寻找例题间的联系

封闭***形中的植树问题例3教学前,学生只是通过直观的方式与以往的知识经验来解决的,此时的学生很少把它看作植树问题,因此教学时我安排摆棋子一环节,主要用意在于:1、巩固练习围棋问题中的解决方法。2、通过这道题把它与植树问题进行沟通,使学生知道其实这些题也可以用植树问题的思考方法来解决。3、虽然教参中并没有强求学生一定要探索出封闭***形植树问题中的规律(即间隔数等于棵数),但这个规律对学生后继的学习很重要,学生可以利用这个规律更容易解决一些实际问题,比如:在解决正多边形的植树问题时,特别是在解决封闭曲线的植树问题(如绕一个圆形的溜冰场一周种树时)显得尤为方便。否则,学生很难想到用间隔数去解决问题,也和前面的例1、例2失去了联系。所以我要通过这道题来与植树问题进行沟通,初步感知规律,然后再回到例3中的问题,引导学生用植树问题的思考方法再次解决例3。并在沟通的过程中,让学生有所感悟:封闭***形的植树问题都可以按照一端种一端不种的植树问题的规律(即间隔数就等于棵数)来加以解决。

二、精心设计教学流程

教学时我是这样设计的:大屏幕出示围棋***,先让学生数一数每边有多少棋子,学生数出每边都有19个棋子。然后,接着问学生那正方形的4条边也就是一周一共多少颗棋子?放手让学生自己去解决出现了不同的结果,很多学生开始都认为每边放19个棋子,四条边,就用19×4=76个,而有的通过数,发现实际只数出有72个棋子,那为什么是72个而不是76个呢,有少部分同学能够发现“四个顶点上的不能重复算”,因此他们能够很快地列出算式:19×4-4=72个。最后,还有没有其他的方法,19×2+17×2=72个,还有18×4=72,然后老师重点引导新思路为什么是18×4,让学生自己去争论,发现规律:封闭***形棵树等于间隔数。

三、反思不足促进教学

不足之处:

1.对于围棋中得植树问题,数量相对比较大,学生想象比较难,教学时引导不够,学生思考不到位。最好应该放慢教学速度,给学生动手操作的时间,这样感触更加深刻。

2.部分学生区分不开:间隔数和间距的概念,应该结合生活中得实例来说明。

3.在学习了三种类型的植树问题之后,对于给出的一些生活中类似植树问题相类似的问题,学生搞不懂是哪一种类型的植树问题。

植树问题对于学生的掌握,相对比较难,以上是我在教学中发现的学生中存在的问题,针对这些问题,安排一节练习帮助学生巩固和掌握。

植树问题教案13

教学目标:

(一)利用信息技术平台,提供问题情境,让学生通过生活中的事例探索、掌握解决封闭***形中植树问题的方法。

(二)通过多媒体课件,渗透数形结合思想,引导学生在解决问题的分析、思考过程中,经历抽取出数学模型的过程。

(三)在解决问题中,培养学生的***思考、合作探究的能力,体会数学在生活中的广泛应用

教学重点、难点:

教学重点:

让学生掌握解决封闭***形植树问题的思想方法。

教学难点:

探索发现封闭***形情况下棵树与间隔数之间的关系。

教学过程:

(一)创设情景,引入问题

1.问题一:(出示***片)正方形桂花树台一边也要摆花,量一下边长是9米,每一米摆一盆,请大家帮助算一算,要几盆花?

反馈:谁来告诉大家要摆多少盆花?

预设:生1:91+1=10盆;生2:91=9盆;生3:91-1=8盆

师:这里都有91这是什么意思?+1就是求出了什么?不加的就是求出了什么?-1求出了什么?

小结:同学们用以前学习的植树问题帮我解决了这个数学问题。

2.问题二:如果桂花树的正方形木台四周都要摆上10盆花,共要多少盆花?

[通过展示校园中鲜花盛开的美丽景色,创设情境,引出生活中的数学问题,激发学生探究欲望。]

生1:40盆,

生2:36盆,

师:到底是36盆还是40盆,要知道哪个答案是对的,怎么办?

(让学生互相争论)(听听学生的意见,如果学生说画最好,如果学生说其他,教师可以介入说:老师这儿有个建议。)

小结:看来有些同学认为用画一画的方法比较好是吧,那就请同学们用自己认为好的方法来验证到底是需要多少盆?

(二)多元表征,感知模型

1.出示学习建议:

(1)你可以自己最喜欢的方法来说明你的答案是怎么来的

(2)你也可以利用老师提供的材料(材料1),画一画,圈一圈。并写出算式。(花盆可以用符号表示)

(3)先***思考,再在小组中说一说你的方法。

[把学习的主动权交给了学生,放手让学生想一想、画一画、说一说,激活学生已有的生活经验,既满足了学生的表现欲望,又培养了学生自主探索、小组合作学习的意识。]

2.反馈:你是怎么想的?(先把学生的四种方法都出来,再讲评每一种方法)

预设:

生1:102=20,82=16 20+16=36;

生2:94=36;

生3、84+4=36;

生4:104-4=36;

师:你能解释一下是怎么想的吗?(听完学生说自己的思路如果他没画***的,问一下用同样的算法,但是画***的)

[通过多媒体投影直观展示学生思维过程和解决方法,激发学生探究欲望。]

回顾:刚才我们这四种方法解决了问题.(课件演示)

[通过信息技术动态展示不同的解题策略,引导学生从不同之中找到相同点,将各种算法统一起来,散而不乱,达到了多样化之后的优化,让学生经历多元表征,充分感知数学模型,实现了信息技术与教学内容的整合。]

小结:通过同学们的认真思考,利用已有的知识与经验探索出了这四种不同的策略来解决了同一个数学问题。

(三)探索规律,有效建模

1.抛出问题:除了给桂花树正方形的台摆鲜花,在学校的`其他的还有其他的一些地方也要摆一些鲜花,

每边6盆,一共要多少盆? 每边4盆,一共要多少盆?

2.反馈:你是怎么算的?(结合***说明算式的意思)

预设:

生1:63=18 46=24

生2:63-3=15 46-6=18

生3:63+3=15 46+6=30

3.讨论:仔细观察这些算式,告诉我们这些封闭***形上每边摆花的盆数,求花盆总数可以怎么求呢?

小结:我们从正方形,三角形,六边形等等作为研究的材料,发现了在这样的封***形上植树的棵数就是(每边盆数-1)边数=盆数

4.

展开:圆坛一周全长16米,如果沿着圆坛一圈每隔2米放一盆花,一共需要几盆花?

学生自主探索。

交流评价:一共种几棵?你是怎么想的?你觉得在圆上放花有规律吗?有什么规律?(学生在电脑上进行多媒体演示并讲述想法)

你还有什么新的发现?(引导学生将在圆坛上摆花的问题和线段上的植树问题联系起来)

小结:花盆数=间隔数

[让学生在电脑上直观操作,充分展示学生的思维过程,在思维碰撞中学生们认识到在圆坛上摆花的问题可以和线段上的植树问题联系起来,轻松地找到了新旧知识的结合点。]

5.提升:在三角形、正方形、正六边形上摆花盆的总数与间隔数是不是也具有这样的关系呢?

(1)学生探索

(2)反馈

(3)演示:将这些***形拉伸为圆,并转化为线段。

小结:其实在所有封闭***形上,都具有花盆数=间隔数这样的关系。所以我们要求花盆总数,可以先求出间隔数。

[通过电脑动画的演示,学生可以直观地发现所有的封闭***形植树问题都可以转化为在圆上的植树问题,并且有和***段上一端栽树的情况一样。这样,又一次沟通了各个封闭***形之间的联系,轻松突破的本课难点。]

(四)拓展提升,实践应用

1.学校为了美化校园环境,开展了摆花设计方案征集。有以下三种,请选择一种你最喜欢的***形,算一算如果每边放三盆花,一共可以摆放多少盆花?你还能设计出其他方案吗?

2.小结

通过今天这节课的学习,你有什么收获?

植树问题教案14

教学目标:

1. 使学生通过生活中的事例,初步体会解决植树问题的方法。

2. 初步培养学生从实际问题中探索规律,找出解决问题的有效方法 的能力。

3. 让学生感受数学在日常生活中的广泛应用,培养学生的应用意识 和解决问题的能力。

教学重点:

用解决植树问题的方法解决实际问题。

教学难点:

栽树的棵数与间隔数之间的关系。

教具准备:

多媒体。

设计理念:新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆。动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

教学过程

一、谈话导入:

师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔一定的距离植树,这就需要计算准备多少棵树苗;还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

二、揭示学习目标:(媒体出示)

通过这节课的学习,我们要解决哪些问题呢?

1. 能根据相关条件,求出需要多少棵树苗或计算两树间的距离。

2. 能利用植树问题,灵活解决生活中类似的实际问题。

三、探究新知:

1. 出示例1:同学们在全长100米的小路一边植树。每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)

师:你会计算吗?(让学生回答)你算的对吗?请同学们自己动脑来验证一下。

学习提示:(媒体出示)

①假如路长只有10米,要栽几棵树?如果路长是20米,又要栽几棵树?请你画线段***来看看。(注意看***上有几个间隔和几个间隔点)

②通过上面的分析,你能找出什么规律?和同桌或小组内说说。

③现在你能算出一共需要多少棵树苗吗?

④你还有别的想法吗,在小组内说说。

2. 学生自学探讨。(师巡视)

3. 班内交流。学生回答后,师媒体演示间隔数和间隔点数的关系。

总结规律:栽的.棵数比间隔数多1。

完成例题。

四、变化巩固:

1. 做一做:118页学生***完成。订正时说说怎么想的。重点让学生明确先求出间隔数,即36棵树有35个间隔。

2. 122页第2题。***完成,同桌交流想法,可一生板演。

五、检测反馈:(***完成)

1. 在一条长400米的马路的一边,从头到尾每隔8米种一棵树。一共可以种多少棵树?

2. 5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

3. 从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?

学生完成后师批阅订正,发现问题及时解决。

六、总结延伸:这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题。解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的情况,希望大家开动脑筋,灵活处理。

植树问题教案15

教学内容:

《义务教育教科书.数学》五年级上册p106—107。

教材分析:

“植树问题”是义务教育课程标准实验教科书四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、两端不栽以及封闭***形(方阵问题)等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

学情分析:

学生已经学习了除法的含义、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段***来解决问题的方法。从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

设计理念及思路:

“数学广角”系统而有步骤地向学生渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。

解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干段(间隔),由于路线不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。“植树问题”的本质是对应问题,只要明确了“间隔”与“树”这两者之间的对应关系,突出“一一对应”的思想,再以此为基础并通过适当变化就可以应对各种变化了的情况。

为了更好的落实教学目标,本节课在教材的处理上我作了如下调整,把原例题中的路长“100米”改为“20米”,把“两端要栽”这个条件去掉了。数据改小有利于学生思考,也便于学生动手操作,但并不影响我们要研究的数学问题。“两端要栽”这个条件去掉了,旨在让学生在一个开放的.情境中,通过动手操作、演示用一一对应的思想方法去探究植树问题中间隔数与棵数的关系。再通过展示现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后用发现的规律尝试用数学的方法来解决实际生活中的简单问题,从而使学生建立起深刻、整体的表象,提炼出植树问题解题思想方法。

教学目标:

1.知识技能。

借助直观,通过间隔和数的对应,理解间隔数与植树棵数的规律,建立不同情境下植树问题的数学模型。

  2.数学思考。

(1)学生在参与观察、动手操作、比较等数学活动中,发展解决问题的意识和能力,能清晰地表达自己的想法。

(2)学会***思考,体会数形结合、一一对应、化归、建模等数学思想方法。

3.问题解决。

(1)能运用所得到的规律解决实际问题。

(2)能和他人合作交流。

  4.情感态度。

(1)能积极参与数学活动,对数学有好奇心和求知欲。

(2)在数学学习过程中,体验获得成功的乐趣,建立自信心。

(3)感受数学在日常生活中的广泛应用,体验植树问题的价值和作用。

教学重、难点

重点:探究棵数与间隔数之间的关系,运用一一对应,建立植树问题模型,会应用植树问题的模型解决一些相关的实际问题。

  难点:应用植树问题的模型灵活解决一些相关的实际问题。

教学准备

多媒体 笔 直尺

教学方法

讲授、演示、讨论交流、操作练习等

教学过程:

一、课前互动、引出课题

师:想让自己的头脑变得更聪明的同学请以最佳的状态坐好,都有这个美好的愿望,光说不练可不行。这节课就让我们走上思维的道路,一起去迎接新的挑战吧。请看老师给你们带来的课前思维训练题:

1.一根木头长10米,要把它平均锯成9段,需要锯几次?

2.四年级在三楼,每上一层要走20个台阶,一共要走多少个台阶才能到三楼?(每层台阶数相同)

师:锯木头和上楼梯是生活中常见的现象,我们把它叫做“植树问题”,今天这节课我们就一起来研究有关植树问题的知识。(板书课题:植树问题)

  二、探索规律、建立模型

(一)创设情境,出示问题。

园林工人打算在一条长20米的笔直小路一边植树,请同学们按照每隔5米栽一棵的要求帮忙设计一份植树方案,并说明理由。

师:从这份要求上,你能获得哪些信息?

(预设:20米长的小路,一边,每隔5米栽一棵)

师:每隔5米是什么意思?

(预设:两棵树之间的距离是5米,每两棵树的距离都相等)

(二)动手操作,设计方案

同桌二人合作,摆一摆或画一画

(三)交流汇报,展示作品

师:大多数同学已经完成了,谁来汇报(汇报后展示)

(预设:我们小组设计栽了5棵树。在一条长20米的路上,开始先栽一棵,然后隔5米栽第二棵,再隔5米栽第三棵……再隔5米栽第五棵。)

师:不错,老师期待你更精彩的表现,他们设计了5棵,还有不同方案吗?

(预设:我们小组设计栽了4棵树,开头的地方没栽,先隔5米栽第一棵……隔5米栽第4棵。)

师:为什么开头的地方不栽?

(预设:因为有的时候在一条路的一头可能会有障碍物,所以不能栽。)

师:你想得真周到,真是个既细心又爱动脑的孩子。是呀,如果在路的一端有建筑物就只能在另一端栽了!同学们的设计真精彩啊!还有不同的设计方案吗?

(预设:如果路的两端都有建筑物,可以栽3棵。)

师:你回答的太棒了,老师感到震撼!对,有的时候在路的两端都会有障碍物,这个时候路的两端就不能栽树。

(四)比较方案,探究规律。

1.间隔数与总长、间距的关系。

(1)出示植树的三种情况,学生观察相同点。

师:同学们真有创造力!短时间内根据要求设计出了三种不同的方案,你们都有资格成为一名设计师了。现在请用你们雪亮的眼睛看一看,这三种方案中相同的地方是什么?

(2)学生汇报,教师板书。(总长、间距、间隔数 20 5 4)

(3)间隔数与总长、间距的关系。

师:这三种方案的间隔数都是几?能用一个算式来表示吗?(20÷5=4(个))在这个算式中,每个数字分别表示什么?

你们能说说怎样求间隔数吗?(总长÷间距=间隔数)

问:要想知道有几个间隔,必须要知道哪两条信息?(总长、间距)

师:接下来,咱们来比一比,谁的反应快?(如果一条小路长100米,每隔10米栽一棵树,一共有多少个间隔呢?如果每隔20米栽一棵树,一共有多少个间隔呢?)

2.间隔数与植树棵数之间的关系。

(1)学生观察不同点,教师讲解三种方法的名称,同桌交流棵树和间隔数的关系。

问:刚才咱们找到了这三种方案的相同点,请同学们再用你们睿利的目光观察,不同的地方又是什么呢? (预设:植树的棵数不同、植树的方法不同)

学生汇报后,教师讲解三种方法的名称。

师:看来虽然间隔数相同,但是不同的植树方法,植树棵数是不同的。我们就来研究在不同的植树方法中,间隔数与植树棵数之间存在着怎样的关系。赶紧用你们的慧眼去发现吧,可以把你的发现和同桌分享。

(2)汇报交流。(板书)

(3)演示,明白原因。(演示:树与间隔之间的一一对应关系。)

3.小结:解决植树问题方法

师:会求植树的棵树吗?这三种关系可是个宝贝,你们想得到它吗?那请闭上眼睛,打开你的大脑主机,我要把这个宝贝输入你的大脑了,千万别开小差啊,出现死机现象那可麻烦啦,准备好了吗?我要开始传宝贝了……好,收到了宝贝的同学请用最美的姿势坐好。

三、巩固应用、内化提高

师:既然宝贝已经保存在你的大脑里了,那可不能让它天天睡懒觉,得常常拿出来发挥一下它的神奇作用。下面这几道题就需要它大显身手。请看:

1.有一条500米的石子路,在石子路的一侧每隔5米栽一棵(只栽一端),需要准备几棵树?

2.同学们在全长1000米的小路一边植树,每隔8米栽一棵(两端都栽)。一共需要多少棵树苗?

3.大象馆和猩猩馆相距60米。绿化队要在两馆间的小路一侧栽树,相邻两棵树之间的距离是3米。一共要栽几棵树?

4.在一条全长180米的街道两旁安装路灯,(两端都要安装),每隔6米安一座。一共要安装多少座路灯?

四、课堂总结、拓展延伸

师:今天我们一起研究了有关“植树的问题”,不过,我有一个疑问想请大家帮我解释一下:植树问题就仅仅是指植树这一种现象吗?

生举生活中的其他例子,锯木头、上楼梯、安装路灯……

回到大脑思维体操的题目,进一步理解每一个算式表示的意思。

师:第一题锯木头属于哪种情况,第二题又属于哪一种情况呢?

师:今天这节课,你觉得你最大的收获是什么?

师:植树问题在我们的生活中无处不在,它美化着我们的生活,美化着我们的校园。其实在“植树问题”中,“植树”的路线可以是一条线段,也可以是一个封闭***形,比如正方形、长方形或圆形等。有兴趣继续探索吗?请利用本节课学到的方法回家和家长探讨。

板书设计:

(一条线段上的)植树问题

方法 间隔数 棵数 关系

总长 ÷ 间距

两端都栽 4 5 棵数=间隔数+1

只栽一端 4 4 棵数=间隔数

两端不栽 4 3 棵数=间隔数-1

本文发布于:2023-07-29 03:19:36,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/zuowen/1693697460703721.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:植树问题教案.doc

本文 PDF 下载地址:植树问题教案.pdf

标签:教案
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图