高中数学教学设计

更新时间:2023-08-31 00:57:43 阅读: 评论:0

高中数学教学设计

高中数学教学设计

高中数学教学设计(15篇)

作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。那么写教学设计需要注意哪些问题呢?以下是为大家收集的高中数学教学设计,仅供参考,欢迎大家阅读。

高中数学教学设计1

教学目标:

1、了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。

2、会求一些简单函数的反函数。

3、在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。

4、进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。

教学重点:

求反函数的方法。

教学难点:

反函数的概念。

教学过程:

一、创设情境,引入新课

1、复习提问

①函数的概念

②y=f(x)中各变量的意义

2、同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。

3、板书课题

由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。

二、实例分析,组织探究

1、问题组一:

(用投影给出函数与;与()的***象)

(1)这两组函数的***像有什么关系?这两组函数有什么关系?(生答:与的***像关于直线y=x对称;与()的***象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。)

(2)由,已知y能否求x?

(3)是否是一个函数?它与有何关系?

(4)与有何联系?

2、问题组二:

(1)函数y=2x1(x是自变量)与函数x=2y1(y是自变量)是否是同一函数?

(2)函数(x是自变量)与函数x=2y1(y是自变量)是否是同一函数?

(3)函数()的定义域与函数()的值域有什么关系?

3、渗透反函数的概念。

(教师点明这样的函数即互为反函数,然后师生共同探究其特点)

从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。

通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。

三、师生互动,归纳定义

1、(根据上述实例,教师与学生共同归纳出反函数的定义)

函数y=f(x)(x∈A)中,设它的值域为C。我们根据这个函数中x,y的关系,用y把x表示出来,得到x=j(y)。如果对于y在C中的任何一个值,通过x=j(y),x在A中都有的值和它对应,那么,x=j(y)就表示y是自变量,x是自变量y的函数。这样的函数x=j(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数。记作:。考虑到"用x表示自变量,y表示函数"的习惯,将中的x与y对调写成。

2、引导分析:

1)反函数也是函数;

2)对应法则为互逆运算;

3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

5)函数y=f(x)与x=f(y)互为反函数;

6)要理解好符号f;

7)交换变量x、y的原因。

3、两次转换x、y的对应关系

(原函数中的自变量x与反函数中的函数值y是等价的,原函数中的函数值y与反函数中的自变量x是等价的)

4、函数与其反函数的关系

函数y=f(x)

函数

定义域

A

C

值域

C

A

四、应用解题,总结步骤

1、(投影例题)

【例1】求下列函数的反函数

(1)y=3x—1(2)y=x1

【例2】求函数的反函数。

(教师板书例题过程后,由学生总结求反函数步骤。)

2、总结求函数反函数的步骤:

1°由y=f(x)反解出x=f(y)。

2°把x=f(y)中x与y互换得。

3°写出反函数的定义域。

(简记为:反解、互换、写出反函数的定义域)【例3】

(1)有没有反函数?

(2)的反函数是________。

(3)(x<0)的反函数是__________。

在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。

通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。

通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。

题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。

五、巩固强化,评价反馈

1、已知函数y=f(x)存在反函数,求它的反函数y=f(x)

(1)y=—2x3(xR)(2)y=—(xR,且x)

(3)y=(xR,且x)

2、已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。

五、反思小结,再度设疑

本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的***象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。

(让学生谈一下本节课的学习体会,教师适时点拨)

进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。

六、作业

习题2.4第1题,第2题

进一步巩固所学的知识。

高中数学教学设计2

一、课程说明

(一)教材分析:

此次一对一家教所使用教材为北师大版高中数学必修5。辅导内容为第一章第二节等差数列。前一节的内容为数列,学生已初步了解到数列的概念,知道什么是首项,什么是通项等等。以及了解到什么是递增数列,什么是递减数列。通过第一节的学习的铺垫,可以让学生更自主的探究,学习等差数列。而我也是在这些基础上为她讲解第二节等差数列。

(二)学生分析:

此次所带学生是一名高二的学生。聪明但是不踏实,做题浮躁。基础知识掌握不够牢靠,知识的运用能力较差,分析能力较弱,解题思路不清。每次她遇到会的题,就快快的草率做完,总会有因马虎而犯的错误。遇到稍不会的,总是很浮躁,不能冷静下来慢慢思考。就由略不会变成不会。但她也是个虚心听教的孩子,给她讲课,她也会很认真地听讲。

(三)教学目标:

1、通过教与学的配合,让她能够懂得什么是等差数列,以及等差数列的通项公式。

2、通过对公式的推导,让她加深对内容的理解,以及学会自己对公式的推导。并且能够灵活运用。

3、在教学中让她通过对公式的推导来明白推理的艺术,并且培养她学习,做题条理清晰,思路缜密的好习惯。

4、让她在学习,做题中一步步抽丝剥茧,寻找解决问题的方法,培养她敢于面对数学学习中的困难,并培养她对克服困难和运用知识。耐心地解决问题。

5、让她在学习中发现数学的独特的美,能够爱上数学这门课。并且认真对待,自主学习。

(四)教学重点

1让学生正确掌握等差数列及其通项公式,以及其性质。并能***的推导。

2、能够灵活运用公式并且能把相应公式与题相结合。

(五)教学难点:

1、让学生掌握公式的推导及其意义。

2如何把所学知识运用到相应的题中。

二、课前准备

(一)教学器材

对于一对一教教采用传统讲课。一张挂历。

(二)教学方法

通过对生活中的有规律数据的观察来提出问题,让学生结合前一节所学,思考有什么规律。从生活中着手有利于激发学生的兴趣爱好,并能更积极地学习。让学生先***的思考,不仅能让她对所学知识映像更为深刻,并且培养她的缜密思维。让她回答后,我再帮助她纠正,并且让她提出心中所虑。经过我给她讲完课后,让她回答自己先前的疑虑。并且让她自己总结,得出结论。最后让她勤加练习。以一种“提出问题—探究问题—学习知识—解答问题—得出结论—强加训练”的模式方法展开教学。

(三)课时安排

课时大致分为五部分:

1、联系实际提出相关问题,进行思考。

2以我教她学的模式讲授相关章节知识。

3、让学生练习相关习题,从所学知识中找其相应解题方案。

4学生对知识总结概括,我再对其进行补充说明。 5布置作业,让她课后多做练习。

三、课程设计

(一)提出问题

【引入】

根据我们的挂历上,一个月的日期数。通过观察每一行日期和每一列日期它们有什么规律?

思考1 2 3 13579......246810......66666......

这些每一行有什么规律?

(二)分析问题并讲解

1、通过观察每一个数与前一个数相差为同一个常数。再结合前一节所学数列的定义总结出“每一项与前一项的差为同一个常数,我们称这样的数列为等差数列。”并且得出“这个常数为等差数列的公差。”

2、设首项为a1,公差为d。由思考题1 2 3可观察出什么?由学生通过她的发现来推导总结出

ana1n1dnda1d

3、通过分析通项公式的特点,做下题(学生自己分析,思考来做。)例:已知在等差数列{an}中,a520a20xx,试求出数列的通项公式?

通过学生做题再分析总结,用详细的语言讲解总结等差数列的性质

4、由以上公式,性质,让学生总结。

讲解等差数列的定义。并且掌握数列的递增,递减与公差d的关系。

5总结,串讲当日所学

给出题目:12349899100让她求其和Sn,并思考如何快速计算?

(三)布置作业

1、总结当日所学。 2做练习册上章节习题。

3、根据当日所学以及课上所讲求的思考题,找出快速运算方法,并引导预习等差数列前n项和。

四、设计理念

以一种最简便,易懂的方式让学生来学习,一切以让学生正确掌握知识,并能正确运用为理念。并能充分调动学生和家教老师的积极性为理念来设计。

五、教学设计反思

本节课教程内容较难,是下一节等差数列前n项和的铺垫。此节课学习通过联系实际,把数学融入到生活中,从生活中探究学习数学。并提出问题,分析问题。把主动权交给学生,由她先***思考总结,再由我给她正确讲解总结,然后再让她做相应练习题,课后再认真总结。这样可以加强她学习的主动性,更有利于她对知识的消化,吸收。这种方法同时可以培养学生的思维能力,让她从自主学习中探索适合自己的学习方法,培养她***思考的能力。让她更深刻的了解知识内涵,巩固所学。使她能灵活运用所学。

高中数学教学设计3

教学准备

教学目标

1、掌握平面向量的数量积及其几何意义;

2、掌握平面向量数量积的重要性质及运算律;

3、了解用平面向量的数量积可以处理垂直的问题;

4、掌握向量垂直的条件。

教学重难点

教学重点:平面向量的数量积定义

教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

教学过程

1、平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,

则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。

并规定0向量与任何向量的数量积为0。

×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?

2、两个向量的数量积与实数乘向量的积有什么区别?

(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定。

(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分。符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替。

(3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0。因为其中cosq有可能为0。

高中数学教学设计4

一、探究式教学模式概述

1、探究式教学模式的含义。探究式教学就是学生在教师引导下,像科学家发现真理那样以类似科学探究的方式来展开学习活动,通过自己大脑的***思考和探究,去弄清事物发展变化的起因和内在联系,从中探索出知识规律的教学模式。它的基本特征是教师不把跟教学内容有关的内容和认知策略直接告诉学生,而是创造一种适宜的认知和合作环境,让学生通过探究形成认知策略,从而对教学目标进行一种全方位的学习,实现学生从被动学习到主动学习,培养学生的科学探究能力、创新意识和科学精神。可见,探究式教学主张把学习知识的过程和探究知识的过程统一起来,充分发挥学生学习的自主性和参与性。

2、堂探究式教学的实质。课堂探究式教学的实质是使学生通过类似科学家科学探究的过程来理解科学探究概念和科学规律的本质,并培养学生的科学探究能力。具体地说,它包括两个相互联系的方面:一是有一个以“学”为中心的探究性学习环境。在这个环境中有丰富的教学资源,而且这些资源是围绕某个知识主题来展开的。这个学习环境具有民主和谐的课堂气氛,它使学生很少感到有压力,能自主寻找所需要的信息,提出自己的设想,并以自己的方式检验其设想。二是教师可以给学生提供必要的帮助和指导,使学生在研究中能明确方向。这说明探究式教学的本质特征是不直接把与教学目标有关的概念和认知策略告诉学生,取而代之的是教师创造出一种智力交流和社会交往的环境,让学生通过探究自己发现规律。

3、探究式教学模式的特征。

(1)问题性。问题性是探究式教学模式的关键。能否提出对学生具有挑战性和吸引力的问题,使学生产生问题意识,是探究教学成功与否的关键所在。恰当的问题会激起学生强烈的学习愿望,并引发学生的求异思维和创造思维。现代教育心理学研究提出:“学生的学习过程和科学家的探索过程在本质上是一样的,都是一个发现问题、分析问题、解决问题的过程。”所以培养学生的问题意识是探究式教学的重要使命。

(2)过程性。过程性是探究式教学模式的重点。爱因斯坦说:“结论总以完成的形式出现,读者体会不到探索和发现的喜悦,感觉不到思想形成的生动过程,也就很难达到清楚、全面理解的境界。”探究式教学模式正是考虑到这些人的认知特点来组织教学的,它强调学生探索知识的经历和获得新知识的亲身感悟。

(3)开放性。开放性是探究式教学模式的难点。探究式教学模式总是综合合作学习、发现学习、自主学习等学习方式的长处,培养学生良好的学习态度和学习方法,提倡和发展多样化的学习方式。探究式教学模式要面对大量开放性的问题,教学资源和探究的结论面对生活、生产和科研是开放的,这一切都为教师的教与学生的学带来了机遇与挑战。

二、教学设计案例

1、教学内容:数字排列中3、9的探究式教学。

2、教学目标。

(1)知识与技能:掌握数字排列的知识,能灵活运用所学知识。

(2)过程与方法:在探究过程中掌握分析问题的方法和逻辑推理的方法。

(3)情感态度与价值观:培养学生观察、分析、推理、归纳等综合能力,让学生体会到认识客观规律的一般过程。

3、教学方法:谈话探究法,讨论探究法。

4、教学过程。

(1)创设情境。教师:在高中数学第十章的教学中,有关数字排列的问题占有重要位置。我们曾经做过的有关数字排列的题目,如“由若干个数字排列成偶数”、“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的数的个位数字为0或5时,则这个数就能被5整除。那么能被3整除的数,能被9整除的数有何特点?

(2)提出问题。

问题1:在用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的共有()

A、36个B、18个C、12个D、24个

问题2:在用0、1、2、3、4、5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数?

(3)探究思考。点评:乍一看问题1,对于由若干个数字排列成9的倍数的问题,如:81、72、63、54、45、36、27、18、9这些能够被9整除的数的个位数字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的数,不能只考虑个位数字了。于是,需另辟蹊径,探究能被9整除的数的特点,寻求解决问题的途径。

教师:同学们观察81、72、63、54、45、36、27、18、9这些数,甚至再写出几个能被9整除的数,如981、1872等,看看它们有何特点?

学生:它们都满足“各位数字之和能被9整除”。

教师:此结论的正确性如何?

学生:老师,我们证明此结论的正确性,好吗?

教师:好。

学生:证明:不妨以n是一个四位数为例证之。

设n=1000a+100b+10c+d(a,b,c,d∈N)依条件,有a+b+c+d=9m(m∈N)

则n=1000a+100b+10c+d

=(999a+a)+(99b+b)+(9c+c)+d

=(999a+99b+9c)+(a+b+c+d)

=9(111a+11b+c)+9m

=9(111a+11b+c+m)

∵ a,b,c,m∈N

∴ 111a+11b+c+m∈N

所以n能被9整除

同理可证定理的后半部分。

教师:看来上述结论正确。所以得到如下定理。

定理:如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。

教师:利用该定理可解决“能被3、9整除”的数字排列问题,请同学们先解答问题1。

学生:尝试1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。

教师:启发学生观察这些数字有何特点?提问学生。

学生:可以看出只要从1、2、3、4、5、6这六个数中,选取的四个数字中含1(或2),或者同时含1、2,选取的四个数字之和都不是9的倍数。

教师:请学生们继续尝试选取其他数字试一试。

学生:3+4+5+6=18是9的倍数。

教师:因此用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的数,就是由3、4、5、6进行全排列所得,共有=24(个)。

故应选D。

(4)学以致用。

问题2:在用0、1、2、3、4、5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数?

教师:从上面的定理知:如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。同学们对问题2有何想法?

学生讨论:

学生1:被6整除的五位数必须既能被2整除,又能被3整除,故能被6整除的五位数,即为各位数字之和能被3整除的五位偶数。

学生2:由于1+2+3+4+5=15,能被3整除,所以选取的5个数字可分两类:一类是5个数字中无0,另一类是5个数字中有0(但不含3)。

学生3:第一类:5个数字中无0的五位偶数有。

第二类:5个数字中含有0不含3的五位偶数有两类,第一,0在个位有个;第二,个位是2或4有,所以共有+ 。

学生4:由分类计数原理得:能被6整除的无重复数字的五位数共有+ + =108(个)。

(5)概括强化。

重点:了解数字排列问题的特点,理解掌握数字排列中3、9问题的规律。

难点:数字排列知识的灵活应用。

关键:证明的思路以及定理的得出。

新学知识与已知知识之间的区别和联系:已知知识“由若干个数字排列成偶数”、“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的数的个位数字为0或5时,则这个数就能被5整除”。新学知识“如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。都是数字排列知识,要学会灵活应用。

(6)作业。请同学们自拟练习题,以求达到熟练解决此类问题的目的。

总之,探究式教学模式是针对传统教学的种种弊端提出来的,新课程改革强调改变课程过于注重知识的传授和过于强调接受式学习的'状况,倡导学生主动参与乐于探究、勤于动手,让学生经历科学探究过程,学习科学研究方法,并强调获得知识、技能的过程成为学会学习和形成价值观的过程,以培养学生的探究精神、创新意识和实践能力。

高中数学教学设计5

一、目标

1.知识与技能

(1)理解流程***的顺序结构和选择结构。

(2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程***

2.过程与方法

学生通过模仿、操作、探索、经历设计流程***表达解决问题的过程,理解流程***的结构。

3情感、态度与价值观

学生通过动手作***,.用自然语言表示算法,用***表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。

二、重点、难点

重点:算法的顺序结构与选择结构。

难点:用含有选择结构的流程***表示算法。

三、学法与教学用具

学法:学生通过动手作***,.用自然语言表示算法,用***表示算法,体会到用流程***表示算法,简洁、清晰、直观、便于检查,经历设计流程***表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程***。

教学用具:尺规作***工具,多媒体。

四、教学思路

(一)、问题引入揭示题

例1尺规作***,确定线段的一个5等分点。

要求:同桌一人作***,一人写算法,并请学生说出答案。

提问:用字语言写出算法有何感受?

引导学生体验到:显得冗长,不方便、不简洁。

教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用***型符号构成一张***即流程***表示算法。

本节要学习的是顺序结构与选择结构。

右***即是同流程***表示的算法。

(二)、观察类比理解题

1、投影介绍流程***的符号、名称及功能说明。

符号符号名称功能说明

终端框算法开始与结束

处理框算法的各种处理操作

判断框算法的各种转移

输入输出框输入输出操作

指向线指向另一操作

2、讲授顺序结构及选择结构的概念及流程***

(1)顺序结构

依照步骤依次执行的一个算法

流程***:

(2)选择结构

对条进行判断决定后面的步骤的结构

流程***:

3.用自然语言表示算法与用流程***表示算法的比较

(1)半径为r的圆的面积公式当r=10时写出计算圆的面积的算法,并画出流程***。

解:

算法(自然语言)

①把10赋与r

②用公式求s

③输出s

流程***

(2)已知函数对于每输入一个X值都得到相应的函数值,写出算法并画流程***。

算法:(语言表示)

①输入X值

②判断X的范围,若,用函数Y=x+1求函数值;否则用Y=2-x求函数值

③输出Y的值

流程***

小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。

学生观察、类比、说出流程***与自然语言对比有何特点?(直观、清楚、便于检查和交流)

(三)模仿操作经历题

1.用流程***表示确定线段A.B的一个16等分点

2.分析讲解例2;

分析:

思考:有多少个选择结构?相应的流程***应如何表示?

流程***:

(四)归纳小结巩固题

1.顺序结构和选择结构的模式是怎样的?

2.怎样用流程***表示算法。

(五)练习P99 2

(六)作业P99 1

高中数学教学设计6

教学目标:

1.掌握基本事件的概念;

2.正确理解古典概型的两大特点:有限性、等可能性;

3.掌握古典概型的概率计算公式,并能计算有关随机事件的概率.

教学重点:

掌握古典概型这一模型.

教学难点:

如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题.

教学方法:

问题教学、合作学习、讲解法、多媒体辅助教学.

教学过程:

一、问题情境

1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?

二、学生活动

1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;

2.(1)共有“抽到红心1” “抽到红心2” “抽到红心3” “抽到黑桃4” “抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;

(2)6个;即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,

这6种情况的可能性都相等;

三、建构数学

1.介绍基本事件的概念,等可能基本事件的概念;

2.让学生自己总结归纳古典概型的两个特点(有限性)、(等可能性);

3.得出随机事件发生的概率公式:

四、数学运用

1.例题.

例1

有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取2张共有多少个基本事件?(用枚举法,列举时要有序,要注意“不重不漏”)

探究(1):一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,共有多少个基本事件?该实验为古典概型吗?(为什么对球进行编号?)

探究(2):抛掷一枚硬币2次有(正,反)、(正,正)、(反,反)3个基本事件,对吗?

学生活动:探究(1)如果不对球进行编号,一次摸出2只球可能有两白、一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大.记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的可能性相同.

探究(2):抛掷一枚硬币2次,有(正,正)、(正,反)、(反,正)、(反,反)四个基本事件.

(设计意***:加深对古典概型的特点之一等可能基本事件概念的理解.)

例2

一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中

一次摸出2只球,则摸到的两只球都是白球的概率是多少?

问题:在运用古典概型计算事件的概率时应当注意什么?

①判断概率模型是否为古典概型

②找出随机事件A中包含的基本事件的个数和试验中基本事件的总数.

教师示范并总结用古典概型计算随机事件的概率的步骤

例3

同时抛两颗骰子,观察向上的点数,问:

(1)共有多少个不同的可能结果?

(2)点数之和是6的可能结果有多少种?

(3)点数之和是6的概率是多少?

问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?

学生活动:用课本第102页***3-2-2,可直观的列出事件A中包含的基本事件的个数和试验中基本事件的总数.

问题:点数之和是3的倍数的可能结果有多少种?

(介绍***表法)

例4

甲、乙两人作出拳游戏(锤子、剪刀、布),求:

(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.

设计意***:进一步提高学生对将实际问题转化为古典概型问题的能力.

2.练习.

(1)一枚硬币连掷3次,只有一次出现正面的概率为_________.

(2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________..

(3)第103页练习1,2.

(4)从1,2,3,…,9这9个数字中任取2个数字,

①2个数字都是奇数的概率为_________;

②2个数字之和为偶数的概率为_________.

五、要点归纳与方法小结

本节课学习了以下内容:

1.基本事件,古典概型的概念和特点;

2.古典概型概率计算公式以及注意事项;

3.求基本事件总数常用的方法:列举法、***表法.

高中数学教学设计7

一、教材分析

本小节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、***象、性质及初步应用。对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。虽然这个内容十分熟悉,但新教材做了一定的改动,如何设计能够符合新课标理念,是人们十分关注的,正因如此,本人选择这课题立求某些方面有所突破。

二、学生学习情况分析

刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。

三、设计理念

本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。

四、教学目标

1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;

2.能借助计算器或计算机画出具体对数函数的***象,探索并了解对数函数的单调性与特殊点;

3.通过比较、对照的方法,引导学生结合***象类比指数函数,探索研究对数函数的性质,培养学生运用函数的观点解决实际问题。

五、教学重点与难点

重点是掌握对数函数的***象和性质,难点是底数对对数函数值变化的影响.

六、教学过程设计

教学流程:背景材料→引出课题→函数***象→函数性质→问题解决→归纳小结

(一)熟悉背景、引入课题

1.让学生看材料:

材料1(幻灯):马王堆女尸千年不腐之谜:一九七二年,马王堆考古发现震惊世界,专家发掘西汉辛追遗尸时,形体完整,全身润泽,皮肤仍有弹性,关节还可以活动,骨质比现在六十岁的正常人还好,是世界上发现的首例历史悠久的湿尸。大家知道,世界发现的不腐之尸都是在干燥的环境风干而成,譬如沙漠环境,这类干尸虽然肌肤未腐,是因为干燥不利细菌繁殖,但关节和一般人死后一样,是僵硬的,而马王堆辛追夫人却是在湿润的环境中保存二千多年,而且关节可以活动。人们最关注有两个问题,第一:怎么鉴定尸体的年份?第二:是什么环境使尸体未腐?其中第一个问题与数学有关。

***4—1 (如***4—1在长沙马王堆“沉睡”近2200年的古长沙国丞相夫人辛追,日前奇迹般地“复活”了)那么,考古学家是怎么计算出古长沙国丞相夫人辛追“沉睡”近2200年?上面已经知道考古学家是通过提取尸体的残留物碳14的残留量p,利用t?logp 57302估算尸体出土的年代,不难发现:对每一个碳14的含量的取值,通过这个对应关系,生物死亡年数t都有唯一的值与之对应,从而t是p的函数;

如***4—2材料2(幻灯):某种细胞***时,由1个***成2个,2个***成4个??,如果要求这种细胞经过多少次***,大约可以得到细胞1万个,10万个??,不难发现:***次数y就是要得到的细胞个数x的函数,即y?log2x;

***4—2 1.引导学生观察这些函数的特征:含有对数符号,底数是常数,真数是变量,从而得出对数函数的定义:函数y?logax(a?0,且a?1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).

1对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:注意:○ x2对数函数对底数的限制:(a?0,都不是对数函数.○5y?2log2x,y?log5且a?1).

3.根据对数函数定义填空;

例1 (1)函数y=logax的定义域是___________ (其中a>0,a≠1) (2)函数y=loga(4-x)的定义域是___________ (其中a>0,a≠1)说明:本例主要考察对数函数定义中底数和定义域的限制,加深对概念的理

解,所以把教材中的解答题改为填空题,节省时间,点到为止,以避免挖深、拓展、引入复合函数的概念。

[设计意***:新课标强调“考虑到多数高中生的认知特点,为了有助于他们对函数概念本质的理解,不妨从学生自己的生活经历和实际问题入手”。因此,新课引入不是按旧教材从反函数出发,而是选择从两个材料引出对数函数的概念,让学生熟悉它的知识背景,初步感受对数函数是刻画现实世界的又一重要数学模型。这样处理,对数函数显得不抽象,学生容易接受,降低了新课教学的起点] 2

(二)尝试画***、形成感知1.确定探究问题

教师:当我们知道对数函数的定义之后,紧接着需要探讨什么问题?学生1:对数函数的***象和性质

教师:你能类比前面研究指数函数的思路,提出研究对数函数***象和性质的方

法吗?

学生2:先画***象,再根据***象得出性质

教师:画对数函数的***象是否象指数函数那样也需要分类?学生3:按a?1和0?a?1分类讨论

教师:观察***象主要看哪几个特征?

学生4:从***象的形状、位置、升降、定点等角度去识***

教师:在明确了探究方向后,下面,按以下步骤共同探究对数函数的***象:步骤一:(1)用描点法在同一坐标系中画出下列对数函数的***象y?log2xy?log1x 2 (2)用描点法在同一坐标系中画出下列对数函数的***象y?log3xy?log1x 3步骤二:观察对数函数y?log2x、y?log3x与y?log1x、y?log1x的***象特23征,看看它们有那些异同点。

步骤三:利用计算器或计算机,选取底数a(a?0,且a?1)的若干个不同的值,

在同一平面直角坐标系中作出相应对数函数的***象。观察***象,它们有哪些共同特征?

步骤四:规纳出能体现对数函数的代表性***象

步骤五:作指数函数与对数函数***象的比较2.学生探究成果

(1)如***4—3、4—4较为熟练地用描点法画出下列对数函数y?log2x、 y?log1x、 y?log3x、y?log1x的***象23***4—3***4—4 (2)如***4—5学生选取底数a=1/4、1/5、1/6、1/10、4、5、6、10,并推荐几位代表上台演示‘几何画板’,得到相应对数函数的***象。由于学生自己动手,加上‘几何画板’的强大作***功能,学生非常清楚地看到了底数a是如何影响函数y?logax(a?0,且a?1)***象的变化。

***4—5 (3)有了这种画***感知的过程以及学习指数函数的经验,学生很明确y = loga x (a>1)、y = loga x (0(中部)

高中数学教学设计8

前言

为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在20xx年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。这次活动数学学科高中组共收到有49篇教学设计文章。获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者。

在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的文章则排在后面。

不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程.书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪.你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们!

1、集合与函数概念实习作业

一、教学内容分析

《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。

二、学生学习情况分析

该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

三、设计思想

《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。

四、教学目标

1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;

2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;

3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。

五、教学重点和难点

重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;

难点:培养学生合作交流的能力以及收集和处理信息的能力。

六、教学过程设计

【课堂准备】

1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。

2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。

高中数学教学设计9

教学目标:

①掌握对数函数的性质。

②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值域及单调性。

③注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。

教学重点与难点:

对数函数的性质的应用。

教学过程设计:

⒈复习提问:对数函数的概念及性质。

⒉开始正课

1比较数的大小

例1比较下列各组数的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

师:请同学们观察一下⑴中这两个对数有何特征?

生:这两个对数底相等。

师:那么对于两个底相等的对数如何比大小?

生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

师:对,请叙述一下这道题的解题过程。

生:对数函数的单调性取决于底的大小:当0调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递增,所以loga5.1

板书:

解:Ⅰ)当0

∵5.1<5.9 loga5.1="">loga5.9

Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数

∵5.1<5.9 ∴loga5.1

师:请同学们观察一下⑵中这三个对数有何特征?

生:这三个对数底、真数都不相等。

师:那么对于这三个对数如何比大小?

生:找“中间量”,log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,

log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板书:略。

师:比较对数值的大小常用方法:

①构造对数函数,直接利用对数函数的单调性比大小;

②借用“中间量”间接比大小;

③利用对数函数***象的位置关系来比大小。

2函数的定义域,值域及单调性。

高中数学教学设计10

教学准备

教学目标

掌握三角函数模型应用基本步骤:

(1)根据***象建立解析式;

(2)根据解析式作出***象;

(3)将实际问题抽象为与三角函数有关的简单函数模型。

教学重难点

利用收集到的数据作出散点***,并根据散点***进行函数拟合,从而得到函数模型。

教学过程

一、练习讲解:《习案》作业十三的第3、4题

3、一根为Lcm的线,一端固定,另一端悬挂一个小球,组成一个单摆,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是

(1)求小球摆动的周期和频率;(2)已知g=24500px/s2,要使小球摆动的周期恰好是1秒,线的长度l应当是多少?

(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,并给出整点时的水深的近似数值

(精确到0.001)。

(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久?

(3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3

米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

练习:教材P65面3题

三、小结:1、三角函数模型应用基本步骤:

(1)根据***象建立解析式;

(2)根据解析式作出***象;

(3)将实际问题抽象为与三角函数有关的简单函数模型。

2、利用收集到的数据作出散点***,并根据散点***进行函数拟合,从而得到函数模型。

四、作业《习案》作业十四及十五。

高中数学教学设计11

教学目标

(1)理解四种命题的概念;

(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;

(3)理解一个命题的真假与其他三个命题真假间的关系;

(4)初步掌握反证法的概念及反证法证题的基本步骤;

(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;

(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;

(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力.

教学重点和难点

重点:四种命题之间的关系;难点:反证法的运用.

教学过程设计

第一课时:四种命题

一、导入新课

【练习】1.把下列命题改写成“若p则q”的形式:

(l)同位角相等,两直线平行;

(2)正方形的四条边相等.

2.什么叫互逆命题?上述命题的逆命题是什么?

将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论.

如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题.

上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”.

值得指出的是原命题和逆命题是相对的.我们也可以把逆命题当成原命题,去求它的逆命题.

3.原命题真,逆命题一定真吗?

“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.

学生活动:

口答:

(1)若同位角相等,则两直线平行;

(2)若一个四边形是正方形,则它的四条边相等.

设计意***:

通过复习旧知识,打下学习否命题、逆否命题的基础.

二、新课

【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?

【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题.

【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?

学生活动:

口答:若一个四边形不是正方形,则它的四条边不相等.

教师活动:

【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.把其中一个命题叫做原命题,另一个命题叫做原命题的否命题.

若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定.

【板书】原命题:若p则q;

否命题:若┐p则q┐.

【提问】原命题真,否命题一定真吗?举例说明?

学生活动:

讲论后回答:

原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真.

原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真.

由此可以得原命题真,它的否命题不一定真.

设计意***:

通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性.

教师活动:

【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?

学生活动:

讨论后回答

【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题.

教师活动:

【提问】原命题“正方形的四条边相等”的逆否命题是什么?

学生活动:

口答:若一个四边形的四条边不相等,则不是正方形.

教师活动:

【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题.

原命题是“若p则q”,则逆否命题为“若┐q则┐p.

【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

学生活动:

讨论后回答

这两个逆否命题都真.

原命题真,逆否命题也真.

教师活动:

【提问】原命题的真假与其他三种命题的真

假有什么关系?举例加以说明?

【总结】1.原命题为真,它的逆命题不一定为真.

2.原命题为真,它的否命题不一定为真.

3.原命题为真,它的逆否命题一定为真.

设计意***:

通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性.

教师活动:

三、课堂练习

1.若原命题是“若p则q”,其它三种命题的形式怎样表示?请写在方框内?

学生活动:笔答

教师活动:

2.根据上***所给出的箭头,写出箭头两头命题之间的关系?举例加以说明?

学生活动:讨论后回答

设计意***:

通过学生自己填***,使学生掌握四种命题的形式和它们之间的关系.

教师活动:

略。

高中数学教学设计12

一、课题:

人教版全日制普通高级中学教科书数学第一册(上)《2.7对数》

二、指导思想与理论依据:

《数学课程标准》指出:高中数学课程应讲清一些基本内容的实际背景和应用价值,开展“数学建模”的学习活动,把数学的应用自然地融合在平常的教学中。任何一个数学概念的引入,总有它的现实或数学理论发展的需要。都应强调它的现实背景、数学理论发展背景或数学发展历史上的背景,这样才能使教学内容显得自然和亲切,让学生感到知识的发展水到渠成而不是强加于人,从而有利于学生认识数学内容的实际背景和应用的价值。在教学设计时,既要关注学生在数学情感态度和科学价值观方面的发展,也要帮助学生理解和掌握数学基础知识和基本技能,发展能力。在课程实施中,应结合教学内容介绍一些对数学发展起重大作用的历史事件和人物,用以反映数学在人类社会进步、人类文化建设中的作用,同时反映社会发展对数学发展的促进作用。

三、教材分析:

本节内容主要学习对数的概念及其对数式与指数式的互化。它属于函数领域的知识。而对数的概念是对数函数部分教学中的核心概念之一,而函数的思想方法贯穿在高中数学教学的始终。通过对数的学习,可以解决数学中知道底数和幂值求指数的问题,以及对数函数的相关问题。

四、学情分析:

在ab=N(a>0,a≠1)中,知道底数和指数可以求幂值,那么知道底数和幂值如何求求指数,从学生认知的角度自然就产生了这样的需要。因此,在前面学习指数的基础上学习对数的概念是水到渠成的事。

五、教学目标:

(一)教学知识点:

1.对数的概念。

2.对数式与指数式的互化。

(二)能力目标:

1.理解对数的概念。

2.能够进行对数式与指数式的互化。

(三)德育渗透目标:

1.认识事物之间的相互联系与相互转化,

2.用联系的观点看问题。

六、教学重点与难点:

重点是对数定义,难点是对数概念的理解。

七、教学方法:

讲练结合法八、教学流程:

问题情景(复习引入)——实例分析、形成概念(导入新课)——深刻认识概念(对数式与指数式的互化)——变式分析、深化认识(对数的性质、对数恒等式,介绍自然对数及常用对数)——练习小结、形成反思(例题,小结)

八、教学反思:

对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,教材内容的处理收到了一定的预期效果,尤其是练习的处理,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。

对于本教学设计,时间仓促,不足之处在所难免,期待与各位同仁交流。

高中数学教学设计13

教学目标

1.明确等差数列的定义.

2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

3.培养学生观察、归纳能力.

教学重点

1.等差数列的概念;

2.等差数列的通项公式

教学难点

等差数列“等差”特点的理解、把握和应用

教具准备

投影片1张

教学过程

(I)复习回顾

师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

(Ⅱ)讲授新课

师:看这些数列有什么共同的特点?

1,2,3,4,5,6; ①

10,8,6,4,2,…; ②

生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)

对于数列②-2n(n≥1)(n≥2)

对于数列③(n≥1)(n≥2)

共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义:

等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,-2,。

二、等差数列的通项公式

师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:

若将这n-1个等式相加,则可得:

即:即:即:……

由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)

数列②:(n≥1)

数列③:(n≥1)

由上述关系还可得:即:则:=如:三、例题讲解

例1:(1)求等差数列8,5,2…的第20项

(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

(Ⅲ)课堂练习

生:(口答)课本P118练习3

(书面练习)课本P117练习1

师:组织学生自评练习(同桌讨论)

(Ⅳ)课时小结

师:本节主要内容为:①等差数列定义。

即(n≥2)

②等差数列通项公式(n≥1)

推导出公式:(V)课后作业

一、课本P118习题3.2 1,2

二、1.预习内容:课本P116例2P117例4

2.预习提纲:

①如何应用等差数列的定义及通项公式解决一些相关问题?

②等差数列有哪些性质?

高中数学教学设计14

一、教学目标

1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。

2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。

3、通过对四种命题之间关系的学习,培养学生逻辑推理能力

4、初步培养学生反证法的数学思维。

二、教学分析

重点:四种命题;难点:四种命题的关系

1、本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。

2、教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,

3、“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。

三、教学手段和方法(演示教学法和循序渐进导入法)

1、以故事形式入题

2、多媒体演示

四、教学过程

(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!

设计意***:创设情景,激发学生学习兴趣

(二)复习提问:

1.命题“同位角相等,两直线平行”的条件与结论各是什么?

2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?

3.原命题真,逆命题一定真吗?

“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.

学生活动:

口答:

(1)若同位角相等,则两直线平行;

(2)若一个四边形是正方形,则它的四条边相等.

设计意***:通过复习旧知识,打下学习否命题、逆否命题的基础.

(三)新课讲解:

1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。

2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。

3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。

(四)组织讨论:

让学生归纳什么是否命题,什么是逆否命题。

例1及例2

(五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

学生活动:

讨论后回答

这两个逆否命题都真.

原命题真,逆否命题也真

引导学生讨论原命题的真假与其他三种命题的真

假有什么关系?举例加以说明,同学们踊跃发言。

(六)课堂小结:

1、一般地,用p和q分别表示原命题的条件和结论,用¬p和¬q分别表示p和q否定时,四种命题的形式就是:

原命题若p则q;

逆命题若q则p;(交换原命题的条件和结论)

否命题,若¬p则¬q;(同时否定原命题的条件和结论)

逆否命题若¬q则¬p。(交换原命题的条件和结论,并且同时否定)

2、四种命题的关系

(1).原命题为真,它的逆命题不一定为真.

(2).原命题为真,它的否命题不一定为真.

(3).原命题为真,它的逆否命题一定为真

(七)回扣引入

分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:

第一句:“该来的没来”

其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。

第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。

第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。

同学们,生活中处处是数学,期待我们善于发现的眼睛

五、作业

1.设原命题是“若

断它们的真假.,则”,写出它的逆命题、否命题与逆否命题,并分别判

2.设原命题是“当时,若,则”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假.

高中数学教学设计15

一、单元教学内容

(1)算法的基本概念

(2)算法的基本结构:顺序、条件、循环结构

(3)算法的基本语句:输入、输出、赋值、条件、循环语句

二、单元教学内容分析

算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框***在解决问题中的作用;通过模仿、操作、探索,学习设计程序框***表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力

三、单元教学课时安排:

1、算法的基本概念3课时

2、程序框***与算法的基本结构5课时

3、算法的基本语句2课时

四、单元教学目标分析

1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义

2、通过模仿、操作、探索,经历通过设计程序框***表达解决问题的过程。在具体问题的解决过程中理解程序框***的三种基本逻辑结构:顺序、条件、循环结构。

3、经历将具体问题的程序框***转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。

4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

五、单元教学重点与难点分析

1、重点

(1)理解算法的含义(2)掌握算法的基本结构(3)会用算法语句解决简单的实际问题

2、难点

(1)程序框***(2)变量与赋值(3)循环结构(4)算法设计

六、单元总体教学方法

本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

七、单元展开方式与特点

1、展开方式

自然语言→程序框***→算法语句

2、特点

(1)螺旋上升分层递进(2)整合渗透前呼后应(3)三线合

一横向贯通(4)弹性处理多样选择

八、单元教学过程分析

1.算法基本概念教学过程分析

对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。

2.算法的流程***教学过程分析

对生活中的实际问题通过模仿、操作、探索,经历通过设计流程***表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程***的三种基本逻辑结构:顺序、条件分支、循环,会用流程***表示算法。

3.基本算法语句教学过程分析

经历将具体生活中问题的流程***转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程***和基本算法语句表达算法,

4.通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

九、单元评价设想

1.重视对学生数学学习过程的评价

关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。

2.正确评价学生的数学基础知识和基本技能

关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法

本文发布于:2023-07-29 02:52:02,感谢您对本站的认可!

本文链接:https://www.wtabcd.cn/fanwen/zuowen/1693414662678766.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

本文word下载地址:高中数学教学设计.doc

本文 PDF 下载地址:高中数学教学设计.pdf

下一篇:返回列表
相关文章
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2022 Comsenz Inc.Powered by © 专利检索| 网站地图