作为一名优秀的人民教师,我们要在课堂教学中快速成长,借助教学反思可以快速提升我们的教学能力,那么你有了解过教学反思吗?以下是精心整理的乘法结合律教学反思,仅供参考,欢迎大家阅读。
本课是北师大版数学四年级上册第三单元《乘法》中的第三节,它是在学习了两位数乘三位数乘法和初次体验有趣算式规律探索的基础上进一步拓展。对于乘法的交换律,学生学习表内乘法时有了初步体验,知道根据一句口诀能写两道乘法算式,知道互换乘数位置得数相同;并且在乘法的验算中已经初步运用过交换律,只不过他们还没有清楚地意识到这就是乘法交换律。理解乘法结合律对学生来说还有一定的难度,所以本节课应该让学生重点研究乘法结合律。教材主要把认识乘法结合律放在学生自主探索中,通过创设情境活动,让学生逐步发现乘法计算中的特殊现象。这样安排不仅是让学生能发现乘法运算定律,更主要的是让学生经历探索过程。授人以鱼,不如授人以渔,数学思想方法比数学知识本身更为重要。在学生自主探索的过程中,我引导学生通过猜测、验证、归纳、应用等学习形式,采用启发式教学方式,由浅入深,从直观到规律,让学生经历感受数学规律的探索过程与方法。
通过反思我认为在本课的教学中,有以下几个亮点:
1、在开课加入复习口算,通过5×2、25×4、125×8等的计算,使学生明确:这乘积是一个特殊的整十、整百、整千数,会给学生的`计算带来很大的帮助,为后面的教学做好铺垫。
2、探索数学规律是有一个过程的,对于这个过程的认识不是教师传授的,而是学生自己体验感受的,对学生已有的体验与感受及时的归纳总结,是提高探索能力的重要一环。本节课我力求突出以学生发展为本的教学思想,整个教学过程体现以学生自主探索、合作交流为主,通过学生的观察、验证等形式,让学生通过大量的感性材料(算式等式)去感受,再经过学生的大胆交流,自然概括出乘法结合律的内容,培养学生的抽象思维能力。
但是在本节课的教学中还有很多不足的地方,主要表现在:
1、没有将小组讨论,合作交流的学习方式落到实处,没有体现出以“学生为主体”的思想,还有就是我讲的话过多,学生在课上充当“观众”,被动的接受,或者“坐享”其他同学之成。
2、语言缺乏亲切感、缺乏准确性和严谨性,部分学生的积极性没有充分调动。课堂上不能灵机变动,没有充分利用课堂资源。提出的问题不是特别清楚,以至于学生不能及时的发现规律。
3、在归纳乘法结合律的内容时,主观上是时间紧张,可课后想想,实际上是引导不到位。课堂学生气氛不够活跃,思维不积极,学生没有全部参与进来,我有将自己的想法强加给学生的意***。在介绍结合律时,应及时重点引导学生发现“括号的位置不同”。突出括号的位置不同说明什么?这里引导不到位。
4、在教学中,有点偏于关注部分学生,要注意与全体学生的交流,让所有人都能积极参与到学习中来,并且在平时教学中,多注意学生的养成教育,教会学生“倾听”。
5、练习量不够。由于在课堂的细节没有设计和处理,语言不够精炼,导致总结归纳的时间过长,习题没有完成,学生没有更好的进行巩固理解。
从上面的失误中我得出:教师不但要预设教学,更要关注学生,要提前备学生,只有知己知彼,才能百战不殆。
总之,要想上好每一节课,教师要不断学习、不断反思,提高自己的业务水平,在课堂资源生成方面多下功夫。真正做到:吃透教材、把握学生、选好教法、达成目标。使每节课师生在轻松和谐的氛围中高效地完成,使学生学有所获。
在本节课教学中,我改变了传统的沉闷乏味课堂教学,根据教材编写意***,精心设计教学环节组织学生进行乘法结合律的发现与探索活动。这次的数学活动基本完成了预设的学习目标。
第一、俗话说:良好的开端是成功的一半。
在设计新课引入阶段,开课时我说:“我们师生来个比赛好不好?”听到这同学们都异口同声的说“好”。课堂气氛一下就调动起来,同学们都目不转睛的盯着大屏幕。我立即出示几道题,很快的就说出了得数,学生看到老师算的这样快很吃惊,也很好奇。在学生诧异之际我出示了课题,告诉学生通过这节课的学习,你们也会算的向老师一样快。然后很自然的就导出了本节课的'学习目标。这样以师生比赛导入,吸引了学生的注意力,调动了学生的兴趣,激发了学生学习的欲望。
第二、四年级的学生用自己的语言描述定律比较困难。
他们通过直观感知能够理解乘法结合律的涵义,也能够用具体的算式来验证乘法结合律,用字母、符号来表述乘法结合律,但是当让他们用自己的语言来描述乘法结合律时,却有点困难。因此 我在讲解乘法结合律的含义时,花了较多的时间让学生会用语言表达乘法结合律,如:通过验证表达结论——再用自己的话说说——再解释字母公式。从而促使学生能够真正理解定律的含义。
第三、运用乘法结合律进行一些简便计算,重要的是让学生经历一个数学学习的过程,这是一个教学的重点,也是难点。
通过5×2、25×4、125×8的计算,使学生明确:这三组数的乘积是一个特殊的整十、整百、整千数,会给学生的计算带来很大的帮助,为后面的教学做好铺垫。通过比赛计算(15×25)×4和15×(25×4)谁的计算速度快,使学生自己体会到运用乘法结合律可以使计算变得简便。学习乘法结合律的目的是为了使计算简便,但我想这一点如果直接告诉学生,学生可能没有深刻的体验,因此我在这里采用了男女同学计算比赛的游戏,即调剂了计算课枯燥呆板的课堂气氛,又使学生自己有了深刻的体验,感受到学习乘法结合律的必要性。本节课我力求突出以学生发展为本的教学思想,整个教学过程体现以学生自主探索、合作交流为主,通过学生的观察、验证等形式,让学生通过大量的感性材料(算式等式)去感受,再经过学生的大胆交流,自然概括出乘法结合律的内容,较好的培养了学生的抽象思维能力。
第四、把黑板让给学生。
黑板不只是老师的舞台,更是学生展示自己的舞台。把课堂还给学生,把黑板交给学生。在交流展示时,我让各组的代表一边说想法,一边板书算法,学生非常愿意展示自己,展示自己小组的学习成果,语言流利,板书工整。在学生的脸上洋溢着学习的快乐感和成就感。
在本节课教学中,也存在一些不足之处:
第一、练习密度过小,这对学生及时巩固所学知识有一定影响;另练习的层次不是十分的明显,在练习中没有穿插变式练习,如:25×16等,让所有的学生都能有所收获;没有设计不能简算的连乘法,使学生灵活使用乘法结合律,让学生判断能否简算,防止学生的思维定势,从而培养学生具体问题具体分析的思想。
第二、在教学中,有点偏于关注部分学生,没注意与全体学生的交流,让所有人都能积极参与到学习中来,没注意学生的养成教育,教会学生“倾听”。
乘法结合律是学生在学习乘法的运算规律中的一个难点,容易和前面学习的乘法交换律混淆,所以在设计教学过程时,我紧扣课本中的例题,在本节课的导入环节,根据课本上例题引导学生进入情境,让学生一步一步的发现问题,学生学习兴趣较高,接着引导学生根据问题从不同角度思考列出横式,然后让学生观察这两个横式能用什么符号连接起来,学生很快的发现,能用等号,接着顺势总结乘法结合律。
本节课我尊重学生学习的主体地位,让学生发现问题并解决问题,而接下来的习题我也设计了不同类型的题来检测学生对知识的掌握,这个环节习题很丰富,但后来发现有孩子在做题时,能把(a+b)×c=a×c+b×c横式类型的`题从前往后做,而不会从后往前做,这使我觉得在以后的教学中除了培养学生从不同角度看问题的同时也要引导他们举一反三的看问题。
乘法交换律和乘法结合律是四年级数学下册的学习内容,是对乘法运算的一种优化。上课之后从以下几个不同的方面对本节课做反思。
一、思得
为了使学生能够尽快切入主题,我将主题***中的信息作了适量的调整,让学生尽快提出问题并解决问题,从中发现计算定律。学生能够主动参与,并能够自己理解并总结出定律及公式,效率较高。因为节省了时间,我将后面的练习增加了内容,从总结加法运算定律和乘法运算定律的特点,到填空并说出应用了那些定律,从口算中实际应用运算定律达到简化计算,再到实际计算,难度逐渐增加,符合学生的认知规律,能更好地让学会应用,感受到运算定律在简算中的重要作用。
二、思失
同样,节省时间的同时,一副完整的主题***让我分散开,虽然节省了学生分析已知条件的时间,但不利于学生对数学信息较多的.应用题的分析和理解。同时,学生在举例来验证乘法交换律的时候,因为有些孩子已经预习或者之前已经掌握,当他们迫不及待地说出运算定律的名称,没有按照原本的教学设计进行的时候,我还是显得应付有些拘谨,备课的时候没有准备充分,或者平时这方面的锻炼就比较缺乏。看上去内容紧凑,练习丰富,但难免有些学生没有完全理解、学会应用,只是“人云亦云”,从最后的作业说明,我对学生关注不够全面。作为教师语言还不够规范,有的时候说“因数”,而有的时候却又说成“乘数”,还需要数学语言的锤炼。
三、思效
虽然,我在40分钟内完成了教学任务,但在后面的家庭作业和练习中,不难看出一部分孩子对计算定律掌握不够牢固,不知道什么时候该用,该怎么用。因而表面上的环环相扣,可能只符合一部分学有余力的孩子,还不能很好地照顾到每一个层次的学生。因而,不得不去对那些没有完全理解的孩子去“炒生饭”,反而浪费了最有利的教学时机。同样,在后面的应用题中,学生分析问题的能力还有待于加强,不能很好地区分哪些数学信息是有关联的,哪些没有关联,因而,在平时的教学中,不要放过任何一个机会,使学生形成遇到问题能够找到方法去分析的能力。
四、思改
本课存在的问题集中体现了本人教学中长期以来存在的缺点,本课中因为是让学生自己总结两个定律,所以应该放手大胆地让学生多做、多说、多练,形成师生互动,生生互动的教学态势。还应该关注教学效率,不要盲目地赶时间,为了完成任务而去教学,应该更多地关注学生,不能被个别学优生的精彩发言蒙蔽双眼,从而忽视了那些还需要帮助的学生。同时,有些内容,不适合一带而过,而是应作为教学重难点去层层克服,所以要放慢速度,只有在一个知识点完全吸收后才能开展下一个教学环节!
关注教学的有效性,也就是关注学生对知识的理解掌握程度,作为教师不仅仅是完成教学中规定的任务,还应该熟悉本课在小学以及今后学段所学知识链中所起到的重要作用,把教材备透、备熟,加强教师基本功的练习,能够预设到个各种可能的发生,因而做到紧紧围绕学生的认知程度开展有利于教学的活动,达到让学生能够理解,并熟练应用的程度。
《乘法结合律和交换律》这节课是在学习了两位数乘两位数乘法和初次体验有趣算式规律探索的基础上进一步拓展。它与以往教材安排不同的是把认识乘法结合律放在学生自主探索中,通过创设情境活动,让学生逐步发现乘法计算中的特殊现象。本节课的学习目标是:经历探索过程,发现乘法结合律和交换律,并会用字母来表示,在理解乘法结合律和交换律的基础上,会对一些算式进行简便计算。
回顾整个课堂,感触很深。我能很好地运用导学练教学模式,课堂氛围比较活跃,能较好地完成学习目标。对本节课反思如下:
1、导入比较精彩。
俗话说:良好的开端是成功的一半。开课时我说:“我们师生来个比赛好不好?”听到这同学们都异口同声的说“好”。课堂气氛一下就调动起来,同学们都目不转睛的盯着大屏幕。我立即出示几道题,很快的就说出了得数,学生看到老师算的这样快很吃惊,也很好奇。在学生诧异之际我出示了课题,告诉学生通过这节课的学习,你们也会算的向老师一样快。然后很自然的就导出了本节课的学习目标。这样以师生比赛导入,吸引了学生的注意力,调动了学生的兴趣,激发了学生学习的欲望。
2、小组学习比较到位。
导学练模式重在小组学习,课堂上我充分发挥小组的合作学习,完成学习目标。 首先我用多媒体出示一个长方体说:“这是老师在课下搭成的一个长方体,你知道老师搭这个长方体用了几个小正方体吗?”然后出示自学提示,让学生用不同的方法算一算,组内交流算法,第一次进行小组自学。通过观察这些不同的算式,你有什么发现,进行了第二次小组学习。我以(3×5)×4=3×(5×4)为例,等式两边有什么异同时,我又让小组观察研究:在举例验证时我让每个人举一个例子,小组交流,看看有什么发现。通过几次小组学习,调动的学生的学习积极性,使每个人都参与到课堂的学习中来,充分发挥了老师的主导、学生主体的作用,使学生成为课堂的主人。
3、把黑板让给学生。
黑板不只是老师的舞台,更是学生展示自己的舞台。把课堂还给学生,把黑板交给学生。在交流展示时,我让各组的代表一边说想法,一边板书算法,学生非常愿意展示自己,展示自己小组的学习成果,语言流利,板书工整。在学生的'脸上洋溢着学习的快乐感和成就感。
这节课是在学生已经掌握了乘法的计算方法的基础上进行教学的,通过学习,为学生今后运用规律进行简便计算,提高计算速度打下良好的基础。教学时我充分发挥小组合作学习,让学生们进行相互讨论,合作交流的学习方式,很好地体现出以“学生为主体”的思想;
4、注重渗透一种科学的学习方法。
授人以鱼,不如授人以渔,数学思想方法比数学知识本身更为重要。对于结合律的教学,不应仅仅满足于学生理解、掌握乘法结合律,会运用乘法结合律进行一些简便计算,重要的是让学生经历一个数学学习的过程,在学习中受到科学方法、科学态度的启蒙教育。在教学过程中,我主要通过学生的观察、验证、归纳、运用等学习形式,采用启发式教学方式,由浅入深,从直观到规律,让学生去感受数学问题的探索性,培养学生学习数学的兴趣。
不足之处:
1、练习量不够。由于在交流时没有控制好时间,导致交流的时间过长,习题没有完成,学生没有更好的进行巩固理解。
2、学生交流时间过长。课堂交流环节,学生积极踊跃,我忍心打消学生发言的积极性,索性让学生一一汇报展示,结果浪费很多时间。这一环节,想法一样的我可以让学生口头复述,不用一一板书,回升一些时间的。
在加法运算律教学时,学生对这块知识不感兴趣,有部分学生学习过此类知识,认为自己已经学习过了,掌握了,可是作业做下来并不理想。如让学生根据算式判断用的是什么运算律,部分学生判断还不准确,只知道有些题目怎么做并不知道为什么是这样做?于是我把两课时的教学改成了三课时,重新梳理知识。
在学习乘法运算律时,我让学生自己先说说你认为乘法会有什么样的运算律?不管是已经学习过的还是其他学生(有加法运算律的基础)都能说出乘法交换律a×b=b×a,乘法结合律(a×b)×c=a×(b×c)。看学生得意的表情,我问了一句:“那你知道为什么是a×b=b×a和(a×b)×c=a×(b×c)吗?”学生一个个的说理由,生1:“因为交换两个乘数的位置,它们的积不变。”生2:“因为只是交换了两个乘数的位置,这两个乘数并没有发生改变,所以积不变。”再喊了几名学生理由都是差不多的,这时班上陈某某发言了,他说:“我把a看成1,b看成0,那么1乘0得0,交换位置后0乘1还是得0,所以a×b=b×a。”没想到他的发言竟然引起了全班的哄堂大笑,他不好意思的坐下去了。可是我却做了一个和大家不一样的举动,我大声的说了一句:“非常好!”其他学生有点闹不明白了,一个个看着我……“他用举例的的方法证明了这个运算律是对的。其实在我们的数学学习过程中,经常在一系列的题目中发现一些对这类题目的规律,我们就可以总结归纳,有些总结出来的对所有的此类的题目都适用,有些对一些题目适用。以后在我们的数学学习中要学会观察,找到规律,总结方法。陈某某虽然没有总结规律,可是他用举例的方法从另一个方面来证明也是很了不起的。”我的一番话说的他很不好意思,可能我的.话有很多学生都听不懂,但我就是想以此例告诉学生不仅要“知其然”而且要“知其所以然”。有一名学生根据前面学习加法时遇到的用加法交换律检验,想到了用以前学习乘法计算时的验算,交换乘数的位置再算一遍后得到的积是一样的来证明规律的存在。
课本中让学生在解决具体的情境中数学问题,引出一组算式,让学生初步理解两个乘数交换位置,积不变,再让学生通过举例,经历分析、综合、抽象的过程,得出乘法交换律,并用字母表示。乘法结合律的编排和加法结合律的相似,引导学生经过小组讨论发现规律。如果此课是在我以前教学,可能就如教材安排的学生经历这一系列的探索,发现规律,然后让学生通过试一试巩固规律,特别是让学生用自己喜欢的方式去表达规律时,学生可能想到很多不一样的自己喜欢的方式,可是在这边的教学一点点都没有实现,因为大部分学生已经知道了用a和b的形式来表示。可是我在教学加法运算律时,按照我预设的上课,活动没有开展起来,课后我反思,是我没有考虑学生的实际情况,这边的学生在课前有多种途径去在上课之前接受知识,不管是主动还是被动,大部分学生都已经被灌输了a×b=b×a等等之类的知识。学生在上课时就认为自己已经懂了,不用听了;而在以前的学校,学生没有这么多途径,对于他们来说书上的知识就时新知识,他们知识的获得除了课前自己预习外,更多是在课堂上去探索,所以他们课堂上注意力集中,对规律的探索有更多的兴趣,更能经历知识的形成和发展的过程。
在上课时因为学生的特殊情况,在总结出规律后,针对学生的掌握情况,我没有出现试一试,而是直接出现两道题目让学生去进行比赛,(15×17×2和17×(15×2))让学生观察后任选一题进行,看看谁做的快?大部分学生选了第2题,有个别学生选第一题但也用了运算律简便计算。比赛完毕,我让学生汇报,问为什么你会选第一题,体会到把15和2相乘的优越性。
乘法结合律是学生学习运算定律的第二阶段,在此之前学生已经熟练掌握了加法交换律和结合律。因为乘法交换律和结合律与加法交换律和结合律基本相同,通过知识的正迁移学生完全能够自己学会。因此我把本节课的学习目标定位为:让学生经历乘法结合律的探索过程,理解和掌握乘法结合律的内容并能用字母表示规律。运用乘法交换律,结合律达到简便计算;利用知识的正迁移,渗透规律的发现,验证的科学方法。培养自觉探索、合作学习的精神,并从中体验到成功感。
其实,很多学生在学习乘法结合律与交换之前,已经会简便运算了。我认为原因有三:
一是教材本身和老师之前或多或少有渗透;
二是学生课外学习所得;
三是来自学生自身的'计算经验。他们根据自己经验,模糊地知道在乘法算式中,改变乘数的位置、改变运算顺序,结果是不变的,出于需要有时就会对算式进行转换,他们很显然不是通过乘法交换律、结合律。看来,会不会学生是对定律的意义现有模糊认识,然后我们给他们提炼一个本质、简洁的模型的,而这个模型的作用是为他以前的简便算法找到一个数学上的依据。
探索数学的规律是有一个过程的,对这个过程的认识并不是教师传授的,而是需要学生自己体验、感受的。对学生已有的体验与感受及时地进行梳理,是提高探索能力的重要一环。最后,当学生已经概括出乘法的结合律后,如果能进一步追问:“请大家想一想,我们是怎样发现乘法结合律的呢?”通过学生对方方面面的反思,引出最后的概括。这样可能对学习方法的掌握会更深刻一些。虽然,学生要真正理解概括还需要大量地体验,但相信经历多次这样的过程,学生就能体会到探索的基本步骤。
反思整节课,本课中因为是让学生自己总结定律,所以应该放手大胆地让学生多做、多说、多练,形成师生互动,生生互动的教学态势。但在课前对学生学情关注还是不够,做为代班四年的教师应该为此感到愧疚,应该想到有一部分孩子看不见屏幕上的字,课前就应该给孩子们将学案打印出来,那样能节省更多时间,效率会更高一些。
这节课的教学目的是:让学生通过计算、观察、交流、归纳等活动,经历探索乘法结合律的全过程,理解并用字母表示乘法结合律,能运用乘法结合律进行简便计算。
在新授过程中,我比较注重学生认知规律和探索规律的方法与过程,放手让学生自己去发现,把看到的现象用数据去验证,并引导他们用自己的语言归纳总结。从学生反馈回来的情况看,学生学得很不错。在学习过程中,我还用大屏幕出示了课本上语言较为严密的乘法结合律,与学生自己归纳总结的`乘法结合律作比较,学生当时就把这个规律牢记在心中,效果很好。
改变评价方式,我抓住学生的已有感知,提出“观察这一组等式,你能发现其中的奥秘吗?”等类似的问题,给学生提供了丰富的感知材料和具有挑战性的研究材料,提供猜测与验证,辨析与交流的空间,把学习的主动权力还给学生。学生的学习热情高了,自然激起了探究的火花。学生的学习方式不再是单一的评价的多元性也体现了出来。
本节课的主要内容是经历探索乘法交换律、乘法结合律的过程,理解并用字母表示乘法交换律、结合律,能运用乘法交换律、结合律进行简便运算。教学重点是经历探索乘法交换律、乘法结合律的过程;难点是能运用乘法交换律、结合律进行简便运算。
上完这节课,我对这节课值得反思的东西还是挺多的。通过本节课的学习,基本达到教学目标。在课堂上我花更多的时间关注学生的学习过程,有意识地引导学生亲历“做数学”的过程。整个课堂气氛比较好,师生交流和谐融洽。首先我在通过复习加法交换律引入课题,让学生从一组算式中发现乘法交换律,让学生说自己喜欢的符合乘法交换律的式子,再次引起学生的学习兴趣,并自己总结字母表达式。然后我通过两组算式,采用男女生比赛的形式让学生算一算,仔细观察,说出自己发现了什么。引导学生先自主探究,再小组合作讨论,让每一个学生都参与学习的.全过程,体会学习的方式的多样化,在老师的引导下将学生的发现规律加以整理归纳得出:三个数相乘先把前两个数相乘或先把后两个数相乘,它们的积不变,引出乘法结合律。表扬女生使学生发现女生利用乘法结合律比较简便,自然引入简便计算。最后练习在运用和巩固已学乘法运算定律的基础上,深化学习内容,为学生提供了充分展示自己的思维的广阔空间,培养学生创新意识和探求精神。最后由学生归纳小结本课所学知识,便于知识的主动建构。
通过本节课教学,由此引发了我的几点思考和体会:
1、提供主动参与的条件,促进教学资源动态生成。
传统的课堂教学是教师讲、学生听,依据教材给的例子,通过观察,发现规律,再进行模仿练习,课堂沉闷乏味。首先,通过教材重组,呈现教学内容结构,学生在感性认识上获得了基础,从而为发现、概括乘法结合律奠定了基础。其次,为学生提供足够的学习时间和空间,教师启发学生用抽象的算式来举例验证,引导学生进行小组合作探究,师生、生生多向互动,人人体验探索规律的过程。第三,改变了学生被动接受的学习方式,让学生根据自己对知识的理解和课堂中获得的信息进行判断和辨析,提出自己的'见解和疑问。因此,课堂上体现学生在主动参与中思维的灵活性和开拓性,出现了许多令我意外而惊喜的资源。如有的学生提出:乘法结合律不仅是三个数相乘,还可以是四个数相乘。另一个学生提出:两个数相乘也能运用乘法结合律的例子等。
2、捕捉和利用教学资源,促进教学过程动态生成。
当学生动起来,课堂活起来,产生多种教学资源时,教师能否及时捕捉,给予准确、即时的判断,并且利用这些资源进行教学,促进教学资源的再生成与提升,不断推进教学过程,显得尤其重要。课前,考虑学生在课堂中可能出现的各种情况;课上,关注学生的学习状态思维方向,即时调整教学方案和教学行为,促进课堂教学过程不断动态生成。从学生质疑“乘法结合律不仅是三个数相乘,也可以是多个数
相乘”,可以看出学生的思维相当拓展,已经不惟书、不惟师,敢于质疑、批判的精神风貌。我再次引导学生讨论、交流:“怎样归纳乘法结合律,你能说说吗?”及时促进学生的思维提升到更高的层面,进行思维的聚合。当学生提出“125×16也能运用乘法结合律”时,我觉得这节课的教学已经成功了。学生学会迁移,学会从个别到一般的推理方法,从而进一步拓展学生的思维,把课堂教学再次推上新的“高潮”。
通过这节课的教学,我深深体会到:一个真实的教学过程是不可预设的,而是一个师生等多种因素间动态的相互作用的过程。教师应多关注学生,要为学生提供必要的资源,要善于开发和利用学生资源,使课堂成为一个资源生成和动态生成的过程,成为促进师生生命共同发展的场所。
授人以鱼,不如授人以渔,数学思想方法比数学知识本身更为重要。这节课是在学生已经掌握了乘法的计算方法的基础上进行教学的,通过学习,为学生今后运用规律进行简便计算,提高计算速度打下良好的基础。在教学过程中,我主要通过学生的观察、验证、归纳、运用等学习形式,采用启发式教学方式,由浅入深,从直观到规律,让学生去感受数学问题的探索性,培养学生学习数学的兴趣。教学时,我是先讲乘法交换律,再讲结合律,因为乘法交换律在学生以前的学习中都有渗透,而乘法结合律的生成也有赖于乘法交换律,所以先讲交换律可以以旧引新,为学生下一步学习结合律做好铺垫。
在这次教学中,也存在着许多不足。
一、语言不够严谨,要简洁、精炼。在叙述乘法结合律时,要紧扣乘法结合律的定义。
二、要注意一下细节问题。在学生讨论、举例时,要求孩子验证等式是否成立时,要求叙述得不够严谨。
三、针对学生错误的回答,解释得不是很到位,需要针对孩子的回答,来着重讲解。
四、对于教材提供的主题***的体会:
教材所提供的主题***是计算正方体的个数,在计算中,出现解题策略的多样化,从而产生我们需要的素材。教后,发现学生能呈现的算法基本上局限在:345、354、453范围内,我们探索所需要的类似3(45)的算式是较难主动再现的。因此,教学中,要通过刻意的人为的引导得到,其实很不自然,有些强加的感觉。也许,直接呈现乘法结合律的.事例给学生会更好些。
由于经验的欠缺,对课堂的调控与把握还是做得不到位。有时候我的语言有些随意,不够正式,评价语言不够丰富,这是非常不足之处,既而需要我今后努力学习的方向。还有通过有其他老师的点评,让我明白老师的辅助作用及提问题的技巧性也很重要的,只有这样才能更好地达到课堂的有效教学。
今后的工作中,要多向以下几个方面努力:
1.多听课,多学习。学习优秀教师的新思想、新方法,改善课堂教学,提高课堂教学艺术和课堂效率。
2.加强同科组教师之间的沟通和交流,相互学习,取长补短,共同进步。
3.认真钻研教材,把握好教材的重点、难点、关键点、易混点,上课时才能做到心中有数。
1、乘法分配律既要注重它的外形结构特点,更要注重其内涵。
乘法分配率的结构特点,即两数的和乘一个数(先加后乘)=两个积的和(先乘后加),使学生从表象上进行初步感知。从而理解(4+2)×25=4×25+2×25是相等的',即左边表示6个25,右边也表示6个25,所以(4+2)×25=4×25+2×25。
2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。
乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?
3、让学生进行一题多解的练习,加深学生对乘法结合律与乘法分配律的理解。
如:计算125×88;101×89你能用几种方法?125×88①竖式计算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89①竖式计算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行计算的条件是不一样的。乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。
传统的课堂教学是教师讲、学生听,依据教材给的例子,通过观察,发现规律,再进行模仿练习,课堂沉闷乏味,而本节课我改变了传统的课堂教学.
本节设计中,在新课引入阶段,创设了生活情境,从学生已有的生活经验和知识出发,通过让学生帮助老师搭建领操台需要多少块方砖来发现问题,提出猜想.作为一节探索数学的规律课,对于乘法结合律的教学,不应仅仅满足于学生理解、掌握乘法结合律,会运用乘法结合律进行一些简便计算,重要的是让学生经历一个数学学习的过程,这是一个教学的重点,也是难点。在课堂上不同的学生得到了不同的发展。同学们都在探索乘法交换律时,经历了发现规律、提出假设、验证假设、归纳规律的`科学探索过程。在归纳乘法结合律时,思维特别积极活跃的同学,更发挥了他们的聪明才智,得到了进一步的提高。
在课堂教学中还存在一些有待改进的地方,特别是在评价方面,重视增加我与学生,以及学生与学生之间的评价,特别是同学之间的评价,更能激发学生的情绪。
本课是北师大版数学四年级上册第三单元《乘法》中的第三节,它是在学习了两位数乘两位数乘法和初次体验有趣算式规律探索的基础上进一步拓展。乘法结合律这一内容与以往教材安排不同的是把认识乘法结合律放在学生自主探索中,通过创设情境活动,让学生逐步发现乘法计算中的特殊现象。这样安排不仅是让学生能发现乘法运算定律,更主要的是让学生经历探索过程。但是我根据学生的实际情况与对这节课内容的研究,进行了修改。
本课我着重突出了以下几点:
⒈充分挖掘教材结合学生实际进行再设计
。教材中对于乘法结合律和交换律的探索是两个分散的情景,在备课时我依据书上的过程设计教学,可试课时发现在探索结合律时,教师在引导出书上的算式上也有些牵强,而且我发现学生对乘法交换律理解的更容易。所以我将探索交换律的过程作为探索结合律的阶梯,由浅入深,由易到难会让学生更容易接受。因此,我改变了教材结构,先探索乘法交换律,突出整体性。收到了较好的效果。
⒉注意渗透一种科学的学习方法。
对于结合律的教学,不应仅仅满足于学生理解、掌握乘法结合律,会运用乘法结合律进行一些简便计算,重要的是让学生经历一个数学学习的过程,了解所要学习内容的目的.是什么。在学习中渗透运用定律解决问题的好处,让学生学得积极、主动。
⒊体现学生的自主学习,合作交流。课堂上老师应激发学生的学习积
极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
这节课基本完成了教学目标,我感觉比较好的地方:让学生经历探索的过程,发现问题——找出规律——举例验证——归纳结论。虽然学生要真正理解老师所做的概括还需要大量的体验,但我相信他们经历多次这样的尝试过程,一定能逐步理解并掌握探索的基本步骤。
这节课感觉存在不足:
1.学生初次用自己的语言描述乘法结合律比较困难。
2.在介绍结合律时,应及时引导学生发现“括号的位置不同”。
3.括号的位置不同说明什么?”这里引导不到位。
一、对主题***使用的体会
教材所提供的主题***是计算正方体的个数,在计算中,出现解题策略的多样化,从而产生我们需要的素材。教后,发现学生能呈现的算法基本上局限在:3×4×5、3×5×4、4×5×3范围内,我们探索所需要的类似3×(4×5)的算式是较难主动再现的。因此,教学中,要通过刻意的人为的“引导”得到,其实很不自然,有些强加的感觉。也许,直接呈现给学生会更好些。但是又与以前学习的知识是相矛盾的,如(3×4)×5,是不应该添括号的。
二、对教学内容的体会
在教学中发现,在具体应用时,学生对乘法结合律和乘法交换律是很难分清楚的。比如:25×125×8×4,学生处理的第一步是:25×4×125×8,第二步是:(25×4)×(125×8)。一般来说,学生认为第一步是依据乘法交换律,第二步是乘法结合律。显然这样的认识是不全面的。
我认为有些知识在小学阶段的教学可以模糊一点。
首先,在小学阶段,有些问题要搞清楚,是很难的。对乘法结合律和交换律,北师大教材没有文字定义,只有字母模型,参考人教版,它对乘法结合律和交换律的定义是:先把前两个数相乘,或者先把后两个数相乘,积不变;两个乘数交换位置,积不变,这叫做乘法交换律。较之原来浙教版,少了三个数相乘和两个数相乘的前提,结合它的教师用书,我们不难发现,它告诉大家的.信息是:编者无奈,小学生的认知水平低,科学地分析计算过程中到底根据什么规律,对他们来说,太麻烦,也不好理解,只单纯产应用了结合律或交换律算了。
其次,没有这个必要的。在小学阶段不存在非要清楚区分乘法结合律与交换律,我们只要让学生理解乘法结合律是一种数学规律,意义是改变运算顺序,积不变;乘法交换律也是数学规律,改变乘数位置,积不变。至于一定要在三个数相乘和两个数相乘的前提下讨论的话,那学生在简便计算中,看不到三个数、两个数的模型,很难想到依据的定律是什么,只知道改变的什么。所以,从意义上理解定律更能让学生接受,然后让学生体会用定律模型能把这种变化规律表达地最简洁、本质。
三、关于对乘法运算定律与简便运算关系的思考
是不是学了乘法运算定律以后,学生才会简便运算的呢?有一个有趣的现象,教师应该有体会。很多学生在学习乘法结合律与交换之前,已经会简便运算了。我认为原因有三:一是教材本身和老师之前或多或少有渗透;二是学生课外学习所得;三是来自学生自身的计算经验。他们根据自己经验,模糊地知道在乘法算式中,改变乘数的位置、改变运算顺序,结果是不变的,出于需要有时就会对算式进行转换,他们很显然不是通过乘法交换律、结合律。看来,会不会学生是对定律的意义现有模糊认识,然后我们给他们提炼一个本质、简洁的模型的,而这个模型的作用是为他以前的简便算法找到一个数学上的依据。
乘法分配律的作用只是为了简便运算吗?学生一想到乘法运算定律就想是简便运算,包括验证时的举例时。其实乘法运算定律是一种数学运算规律,存在一切连乘算式中,它是这种乘法运算中可变化规律最本质、简洁的模型。这些模型代表的可变化规律,有时可以使一些计算简便。但它不是因为简便运算而产生的,它的存在也不是单单为了简便运算。这点机会可以让学生体会。
从运算定律到简便运算,就这样一个课时可以了吗?我认为不合理,建议教材在运算定律教学中,重点建立模型和理解意义之后,安排一节运算定律的练习课,不是强化对运算定律模型的认识,而是对运算定律意义及作用的体会。同时培养学生规范的表达简便运算过程的习惯。在学生碰到一些特殊运算时,能有意识地根据定律向有利于我们计算简便的方向转化,即具备简便运算的意识。
本文发布于:2023-07-29 02:06:28,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/zuowen/1692861013634978.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:乘法结合律教学反思.doc
本文 PDF 下载地址:乘法结合律教学反思.pdf
留言与评论(共有 0 条评论) |