1
共线问题
1、[例4]如图,在△ABC中,点M是BC的中点,点N在边AC上,且AN=2NC,AM与BN相交于点P,
求AP:PM的值.
[解析]设BM
→
=e
1
,CN
→
=e
2
,则AM
→
=AC
→
+CM
→
=-3e
2
-e
1
,BN
→
=2e
1
+e
2
∵A、P、M和B、P、N分别共线,∴存在实数、使AP
→
=AM
→
=-e
1
-3e
2
,
BP
→
=BN
→
=2e
1
+e
2
,故BA
→
=BP
→
-AP
→
=(+2)e
1
+(3+)e
2
.
而BA
→
=BC
→
+CA
→
=2e
1
+3e
2
由平面向量基本定理,得
+2=2
3+=3
,解得
=
4
5
=
3
5
,
故AP
→
=
4
5
AM
→
,故APPM=41.
2、13.如图,E是平行四边形ABCD的边AD上一点,且AE
→
=
1
4
AD
→
,F为BE与AC的交点.设AB
→
=a,
BC
→
=b,若BF
→
=kBE
→
,AF
→
=hAC
→
,则k=________,h=________.
[答案]
4
5
1
5
[解析]∵AC
→
=AB
→
+BC
→
=a+b,∴AF
→
=hAC
→
=ha+hb,BF
→
=BA
→
+AF
→
=-a+ha+hb=(h-1)a+hb,
又BF
→
=kBE
→
=k(BA
→
+AE
→
)=k(-a+
1
4
b)=-ka+
k
4
b,
显然a与b不共线,∴
h-1=-k
h=
k
4
,解得
k=
4
5
h=
1
5
.
3、15.在▱ABCD中,设边AB、BC、CD的中点分别为E、F、G,设DF与AG、EG的交点分别为H、
K,设AB
→
=a,BC
→
=b,试用a、b表示GK
→
、AH
→
.
[解析]如图所示,GF
→
=CF
→
-CG
→
=-
1
2
b+
1
2
a,因为K为DF的中点,所以GK
→
=
1
2
(GD
→
+GF
→
)
=
1
2
-
1
2
a-
1
2
b+
1
2
a
=-
1
4
→
=CF
→
-CD
→
=-
1
2
b+a.
因为A、H、G三点共线,所以存在实数m,使AH
→
=mAG
→
=m
b+
1
2
a
;
又D、H、F三点共线,所以存在实数n,使DH
→
=nDF
→
=n
a-
1
2
b
因为AD
→
+DH
→
=AH
→
,所以
1-
n
2
b+na=mb+
m
2
a
因为a、b不共线,所以
1-
n
2
=m
n=
m
2
,解得m=
4
5
,即AH
→
=
4
5
b+
1
2
a
=
2
5
(a+2b).
4、16.如图,在△OAB中,延长BA到C,使AC=BA,在OB上取点D,使
DB=
1
3
OB,DC与OA交于点E,设OA
→
=a,OB
→
=b,用a,b表示向量OC
→
,DC
→
.
2
[分析]将待求向量用已知向量、或与已知向量共线的向量、或能用已知向量表示的向量线性表示,逐
步化去过渡的中间向量.
如待求OC
→
,已知OA
→
、OB
→
,即知BA
→
,因为BC
→
可用BA
→
线性表示,故可用OB
→
和BC
→
来表示OC
→
.
[解析]因为A是BC的中点,所以OA
→
=
1
2
(OB
→
+OC
→
),即OC
→
=2OA
→
-OB
→
=2a-b.
DC
→
=OC
→
-OD
→
=OC
→
-
2
3
OB
→
=2a-b-
2
3
b=2a-
5
3
b.
5、18.在△OAB中,OC
→
=
1
4
OA
→
,OD
→
=
1
2
OB
→
,AD与BC交于点M,设OA
→
=a,OB
→
=b,以a、b为基底
表示OM
→
.
[分析]显然a、b不共线,故可设OM
→
=ma+nb,由A、M、D三点共线及
B、M、C三点共线利用向量共线条件求解.
[解析]设OM
→
=ma+nb(m,n∈R),则AM
→
=OM
→
-OA
→
=(m-1)a+nb,
AD
→
=OD
→
-OA
→
=
1
2
b-a因为A、M、D三点共线,所以
m-1
-1
=
n
1
2
,即m+2n=1
又CM
→
=OM
→
-OC
→
=
m-
1
4
a+nb,CB
→
=OB
→
-OC
→
=-
1
4
a+b,
因为C、M、B三点共线,所以
m-
1
4
-
1
4
=
n
1
,即4m+n=1,
由
m+2n=1
4m+n=1
,解得
m=
1
7
n=
3
7
,所以OM
→
=
1
7
a+
3
7
b.
6、19.(本题满分12分)在▱ABCD中,点M在AB上,且AM=3MB,点N在BD上,且BN
→
=BD
→
,C、
M、N三点共线,求的值.
[解析]设AB
→
=e
1
,AD
→
=e
2
,则BD
→
=e
2
-e
1
,
BN
→
=BD
→
=(e
2
-e
1
),MB
→
=
1
4
AB
→
=
1
4
e
1
,BC
→
=AD
→
=e
2
,
∴MC
→
=MB
→
+BC
→
=
1
4
e
1
+e
2
,MN
→
=MB
→
+BN
→
=
1
4
e
1
+(e
2
-e
1
)=e
2
+
1
4
-
e
1
,
∵M、N、C共线,∴MN
→
与MC
→
共线,∵e
1
与e
2
不共线,∴
1
4
-
1
4
=
1
,∴=
1
5
.
(2010合肥市)如图,△ABC中,AD=DB,AE=EC,CD与BE交于F,设AB
→
=a,AC
→
=b,AF
→
=xa+
yb,则(x,y)为()
3
A.
1
2
,
1
2
B.
2
3
,
2
3
C.
1
3
,
1
3
D.
2
3
,
1
2
[答案]C
[解析]设CF
→
=CD
→
,∵E、D分别为AC、AB的中点,∴BE
→
=BA
→
+
AE
→
=-a+
1
2
b,BF
→
=BC
→
+CF
→
=(b-a)+(
1
2
a-b)=
1
2
-1
a+(1-)b,
∵BE
→
与BF
→
共线,∴
1
2
-1
-1
=
1-
1
2
,∴=
2
3
,∴AF
→
=AC
→
+CF
→
=b+
2
3
CD
→
=b+
2
3
1
2
a-b
=
1
3
a+
1
3
b,故x=
1
3
,y=
1
3
.
7、8.已知P是△ABC所在平面内的一点,若CB
→
=PA
→
+PB
→
,其中∈R,则点P一定在()
A.△ABC的内部B.AC边所在直线上C.AB边所在直线上D.BC边所在直线上
[答案]B
[解析]由CB
→
=PA
→
+PB
→
得CB
→
-PB
→
=PA
→
,∴CP
→
=PA
→
.则CP
→
与PA
→
为共线向量,又CP
→
与PA
→
有一个公共点P,
∴C、P、A三点共线,即点P在直线AC上.故选B.
8、9.G为△ABC内一点,且满足GA
→
+GB
→
+GC
→
=0,则G为△ABC的()
A.外心B.内心C.垂心D.重心
[答案]D
[解析]由于GA
→
+GB
→
+GC
→
=0,所以GA
→
=-(GB
→
+GC
→
),即GA
→
是与GB
→
+GC
→
方向相
反,长度相等的向量.如图,以GB
→
,GC
→
为相邻的两边作▱BGCD,则GD
→
=GB
→
+GC
→
,所
以GD
→
=-GA
→
,在▱BGCD中,设BC与GD交于点E,则BE
→
=EC
→
,GE
→
=ED马步芳简介
→
,故AE是
△ABC中BC边上的中线且|GA
→
|=2|GE
→
|.从而点G是△ABC的重心.选D.
9、10.(2010河北唐山)已知P、A、B、C是平面内四个不同的点,且PA
→
+PB
→
+PC
→
=AC
→
,则()
A.A、B、C三点共线B.A、B、P三点共线
C.A、C、P三点共线D.B、C、P三点共线
[答案]B
[解析]∵AC
→
=PC
→
-PA
→
,∴原条件式变形为:PB
→
=-2PA
→
,∴PB
→
∥PA
→
,∴A、B、P三点共线.
10、4.(2010湖南长沙)已知O是平面上一定点,A、B、C是平面上不共线的三点,动点P满足OP
→
=OA
→
+(AB
→
+AC
→
),∈[0,+∞),则点P的轨迹一定通过△ABC的()
A.外心B.垂心C.内心D.重心
[答案]D
[解析]设AB
→
+AC
→
=AD
→
,则可知四边形BACD是平行四边形,而AP
→
=AD
→
表明A、P、D三点共线.又
D在BC的中线所在直线上,于是点P的轨迹一定通过△ABC的重心.
4
11、5.P是△ABC所在平面上一点,若PA
→
PB
→
=PB
→
PC
→
=PC
→
PA
→
,则P是△ABC的()
A.外心B.内心C.重心D.垂心
[答案]D
[解析]由PA
→
PB
→
=PB
→
PC
→
得PB
→
(PA
→
-PC
→
)=0,即PB
→
CA
→
=0,∴PB⊥CA.
同理PA⊥BC,PC⊥AB,∴P为△ABC的垂心.
12、6.已知△ABC中,若AB2
→
=AB
→
AC
→
+BA
→
BC
→
+CA
→
CB
→
,则△ABC是()
A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形
[答案]C
[解析]由AB2
→
-AB
→
AC
→
=BA
→
BC
→
+CA
→
CB
→
,得AB
→
(AB
→
-AC
→
)=BC
→
(BA
→
-CA
→
),
即AB
→
CB
→
=BC
→
BC
→
,∴AB
→
BC
→
+BC
→
BC
→
=0,∴BC
→
(AB
→
+BC
→
)=0,则BC
→
AC
→
=0,即BC
→
⊥AC
→
,
所以△ABC是直角三角形,故选C.
13、7.若O为△ABC所在平面内一点,且满足(OB
→
-OC
→
)(OB
→
+OC
→
-2OA
→
)=0,则△ABC的形状为()
A.正三角形B.直角三角形C.等腰三角形D.A、B、C均不是
[答案]C
[解析]由(OB
→
-OC
→
)(OB
→
+OC
→
-2OA
→
)=0,得
CB
→
(AB
→
+AC
→
)=0,又∵CB
→
=AB
→
-AC
→
,∴(AB
→
-AC
→
)(AB
→
+AC
→
)=0,即|AB
→
|2-|AC
→
|2=0.
∴|AB
→
|=|AC
→
|.∴△ABC为等腰三角形.
[点评]若设BC中点为D,则有AB
→
+AC
→
=2AD
→
,故由CB
→
(AB
→
+AC
→
)=0得CB
→
AD
→
=0,
∴CB⊥AD,∴AC=BC.
14、5.点O是△ABC所在平面内的一点,满足OA
→
OB
→
=OB
→
OC
→
=OC
→
OA
→
,则点O是△ABC的()
A.三个内角的角平分线的交点B.三条边的垂直平分线的交点
C.三条中线的交点D.三条高线的交点
[答案]D
[解析]由OA
→
OB
→
=OB
→
OC
→
,得OA
→
OB
→
-OB
→
OC
→
=0,
∴OB
→
(OA
→
-OC
→
)=0,即OB
→
CA
→
=0.∴OB
→
⊥CA
→
.同理可证OA
→
⊥CB
→
,OC
→
⊥AB
→
.
∴OB⊥CA,OA⊥CB,OC⊥AB,即点O是△ABC的三条高线的交点.
15、1.(2013烟台模拟)若M为△ABC所在平面内一点,且满足(MB
→
-MC
→
)(MB
→
+MC
→
-2MA
→
)=0,则△
ABC为()
A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形
[答案]B
5
[解析]由(MB
→
-MC
→
)(MB
→
+MC
→
-2MA
→
)=0,可知CB
→
(AB
→
+AC
→
)=0,
设BC的中点为D,则AB
→
+AC
→
=2AD
→
,故CB
→
AD
→
=0,所以CB
→
⊥AD
→
.
又D为BC中点,故△ABC为等腰三角形.
1.(2013济南一模)已知A,B,C是平面上不共线的三点,O是△ABC的重心,动点P满足OP
→工作祝福语
=
1
3
1
2
OA
→
+
1
2
OB
→
+
2OC
→
,则点P一定为三角形ABC的().
A.天津创业 达雅克人 AB边中线的中点B.AB边中线的三等分点(非重心)C.重心D.AB边的中点
解析设AB的中点为M,则
1
2
OA
→
+
1
2
OB
→
=OM
→
,∴OP
→
=
1
3
(OM
→
+2OC
→
)=
1
3
OM
→
+
2
3
OC
→
,即3OP
→
=OM
→
+2OC
→
,也
就是MP
→
=2PC
→
,∴P,M,C三点共线,且P是CM上靠近C点的一个三等分点.答案B
2.在△ABC中,点O在线段什么龟好养又好看 BC的延长线上,且与点C不重合,若AO
→
=xAB
→
+(1-x)AC
→
,则实数x的取值
范围是().
A.(-∞,0)B.(0,+∞)C.(-1,0)D.(0,1)
解析设BO
→
=BC
→
(>1),则AO
→
=AB
→
+BO
→
=AB
→鼻子里面疼
+BC
→
=(1-)AB
→
+AC
→
,又AO
→
=xAB
→
+(1-x)AC
→
,所以
xAB
→
+(1-x)AC
→
=(1-)AB
→
+AC
→
.所以=1-x>1,得x<0.答案A
3.若点O是△ABC所在平面内的一点,且满足|OB
→
-OC
→
|=|OB
→
+OC
→
-2OA
→
|,则△ABC的形状为________.
解析OB
→
+OC
→
-2OA
→
=OB
→
-OA
→
+OC
→
-OA
→
=AB
→
+AC
→
,OB
→
-OC
→
=CB
→
=AB
→
-AC
→
,∴|AB
→
+AC
→
|=|AB
→
-AC
→
|.
故A,B,C为矩形的三个顶点,△ABC为直角三角形.答案直角三角形
4.在△ABC中,E,F分别为AC,AB的中点,BE与CF相交于G点,设AB
→
=a,AC
→
=
b,试用a,b表示AG
→
.
解AG
→
=AB
→
+BG
→
=AB
→
+BE
→
=AB
→
+
2
(BA
→
+BC
→
)=
1-
2
AB
→
+
2
(AC
→
-AB
→
)=(1-)AB
→
+
2
AC
→
=(1-)a+
2
b.
又AG
→
=AC
→
+CG
→
=AC
→
+mCF
→
=AC
→
+
m
2
(CA
→
+CB
→
)=(1-m)AC
→
+
m
2
AB
→
=
m
2
a+(1-m)b,
∴
1-=
m
2
,
1-m=
2
,
解得=m=
2
3
,∴AG
→
=
1
3
a+
1
3
b.
本文发布于:2023-03-18 14:52:16,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/zuowen/1679122337300042.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:分量线.doc
本文 PDF 下载地址:分量线.pdf
留言与评论(共有 0 条评论) |