解二元一次方程:“十字交叉法”
十字相乘就是把二次项拆成两个数的积
常数项拆成两个数的积
拆成的那些数经过十字相乘后再相加正好
等于一次项
看一下这个简单的例子m²+4m-12
m-2
m╳6
把二次项拆成m与m的积(看左边,注意竖着写)
-12拆成-2与6的积(也是竖着写)
经过十字相乘(也就是6m与-2m的和正好是4m)
所以十字相乘成功了
m²+4m-12=(m-2)(m+6)
重点:只要把2次项和常数项拆开来(拆成
乘积的形式),可以检验是否拆的对,只要
相加等于1次项就成了,十字相乘法实际就
是分解因式。
解释说明:
十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,
会给我们带来很多方便,以下是我对十字相乘法提出的一些
个人见解。
1、十字相乘法的方法:十字左边相乘等于二次项系数,右
边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)
用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,
能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较
简单,但并不是每一道题用十字相乘法来解都简单。2、十
字相乘法只适用于二次三项式类型的题目。3、十字相乘法
比较难学。
5、十字相乘法解题实例:
1)、用十字相乘法解一些简单常见的题目
例1把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,
-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为1-2
1╳6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,
-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2
时,才符合本题
解:因为12
5╳-4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可
分成1×15,3×5。
解:因为1-3
1╳-5
所以原方程可变形(x-3)(x-5)=0
所以x1=3x2=5
例4、解方程6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可
以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解:因为2-5
3╳5
所以原方程可变形成(2x-5)(3x+5)=0
所以x1=5/2x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,
则14可分为1×14,2×7,18y²可分为y.18y,2y.9y,3y.6y
解:因为2-9y
7╳-2y
所以14x²-67xy+18y²=(2x-9y)(7x-2y)
例6把10x²-27xy-28y²-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x-(28y²-25y+3)4y-3
7y╳-1
=10x²-(27y+1)x-(4y-3)(7y-1)
=[2x-(7y-1)][5x+(4y-3)]2-(7y–1)
5╳4y-3
=(2x-7y+1)(5x+4y-3)
说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)
(7y-1),再用十字相乘法把10x²-(27y+1)x-(4y-3)
(7y-1)分解为[2x-(7y-1)][5x+(4y-3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x-7y)(5x+4y)-(x-25y)-32-7y
=[(2x-7y)+1][(5x-4y)-3]5╳4y
=(2x-7y+1)(5x-4y-3)2x-7y1
5x-4y╳-3
说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为
(2x-7y)(5x+4y),再把(2x-7y)(5x+4y)-(x-25y)
-3用十字相乘法分解为[(2x-7y)+1][(5x-4y)-3].
例7:解关于x方程:x²-3ax+2a²–ab-b²=0
分析:2a²–ab-b²可以用十字相乘法进行因式分解
解:x²-3ax+2a²–ab-b²=0
x²-3ax+(2a²–ab-b²)=0
x²-3ax+(2a+b)(a-b)=01-b
2╳+b
[x-(2a+b)][x-(a-b)]=01-(2a+b)
1╳-(a-b)
所以x1=2a+bx2=a-b
本文发布于:2023-03-15 05:10:19,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/zuowen/1678828220258947.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:十字交叉相乘法.doc
本文 PDF 下载地址:十字交叉相乘法.pdf
留言与评论(共有 0 条评论) |