资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
1/20
阿罗不可能性定理
编辑本段【名词解释】
阿罗不可能性定理是指,如果众多的社会成员具有不同的偏好,而社
会又有多种备选方案,那么在民主的制度下不可能得到令所有的人都满意
的结果。定理是由1972年度诺贝尔经济学奖获得者美国经济学家肯尼
思·J·阿罗提出。
编辑本段【操作实务】
众所周知,多数原则是现代社会广泛接受的决策方法。洛克认为“根
据自然和理性的法则,大多数具有全体的权力,因而大多数的行为被认为
是全体的行为,也当然有决定权了”。但很多在自然法学家那里是想当然
正确的东西在社会选择理论中是需要证明的.所谓社会选择,在数学上表达
为一个建立在所有个人的偏好上的函数(或对应),该函数的性质代表了
一定的价值规范,比如公民主权、全体性、匿名性、目标中性,帕累托最优
性,无独裁性等。社会选择最重要的问题是,这些价值规范之间是否是逻
辑上协调的。阿罗证明,不存在同时满足如下四个基本公理的社会选择函
数:①个人偏好的无限制性,即对一个社会可能存在的所有状态,任何逻辑
上可能的个人偏好都不应当先验地被排除;②帕累托原则,即一个方案对
所有人是最优的意味着相对于社会偏好序也是最优的;③非相关目标独立
性,即关于一对社会目标的社会偏好序不受其它目标偏好序变化的影响;④
社会偏好的非独裁性.
编辑本段【经典案例】
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
2/20
假设有甲、乙、丙三人,分别来自中国、日本和美国,而且是分别多
年的好朋友。三人久别重逢,欣喜之余,决定一起吃饭叙旧。但是,不同的
文化背景形成了他们不同的饮食习惯,对餐饮的要求各不相同,风格各异
甲:中餐>西餐>日本餐
乙:日本餐>中餐>;西餐
丙:西餐>日本餐>中餐
如果用民主的多数表决方式,结果如下所示:
首先,在中餐和西餐中选择,甲、乙喜欢中餐,丙喜欢西餐;
然后,在西餐和日本餐中选择,甲、丙喜欢西餐,乙喜欢日本餐;
最后,在中餐和日本餐中选择,乙、丙喜欢日本餐,甲喜欢中餐。
三个人的最终表决结果如下:
中餐>;西餐,西餐>日本餐,日本餐>中餐
所以,利用少数服从多数的投票机制,将产生不出一个令所有人满意的
结论,这就是著名的”投票悖论”(paradoxofvoting)。
投票悖论最早是由康德尔赛(MarquisdeCoudorcet)在18世纪提出的,
因而该悖论又称为"康德尔赛效应"[③],而利用数学对其进行论证的则是
肯尼斯·阿罗。
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
3/20
阿罗认为,有关社会选择的两个公理与民主主义所要求的诸条件不相
适应。他所说的公理指以下内容:
公理1:连贯性(connectedness)
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
2/20
在x和y两项选择共存时,下面的某种情况永恒成立:
x大于或等于y;y大于或等于x。
公理2:传递性(transitivity)
在有x、y、z三项选择时,会出现这样几种情况:
x大于或等于y;y大于或等于z;则x大于或等于z。
阿罗指出,奠定这两个公理的基础的社会福利函数与他所谓的民主主义的诸条件
不相称。民主主义的诸条件如下:
(1)条件1:个人排列顺序的普通容许区间.
作为个人来讲,对于如何选择自己的选择值序列问题是无关紧要的。例如,在面
临x、y、z三项选择时,无论是x>y>;z,还是z>y>;x,或者是
y>z>x,.。。.。.总而言之,允许个人按照自己意愿排列选择值顺序.
(2)条件2:社会评价与个人评价的正态相关。
假如有五个人来选择x、y,当其中三人为x>;y,另外二人为xy,而且,即使
出现少数派中的一方改变主意,x>y时,x>y的社会全体的多数表决结果将仍
然如故,不会发生改变。
(3)条件3:与无关选择对象无关的独立性。
在x、y、z三项选择值之间,假定选择顺序为x>;y>;z,那么即使y选择值
已不复存在,剩下x和z的x>z的选择关系仍旧不发生改变。
(4)条件4:公民主权
个人的选择顺序与社会结构无关,即社会中的每个人都能按各自的价值观,自由
地在备选对象中进行选择。
(5)条件5:非独裁
在全体成员中,当只有特定的个人选择x>y,其余人选择xy。[④]
综上所述,即所有五个条件都理应成为民主社会所具备。阿罗认为,如果同时承
认前面两个公理和该五个条件,就会促成投票的悖论效应。这就是阿罗不可能定理。
接下来,笔者举一个简单的例子来说明阿罗所谓两个公理与民主社会的五个条件
的矛盾性。
按照阿罗的理论,假设现在有七个人聚在一起准备去吃饭.这七个人对餐饮的偏
好顺序如下所示:
1号:中餐>;西餐>;日本餐
2号
3号日本餐>;中餐>西餐
4号
5号
6号西餐>日本餐>中餐
7号
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
3/20
由上可以看出,就中餐和西餐比较而言,1至4号喜欢中餐,5-7号喜欢西餐,
故中餐以四比三的结果夺得优势.再将西餐和日本餐相比较,则1号和5至7号喜欢西
餐,2至4号喜欢日本餐,即西餐以四比三的结果夺得优势。如果依照公理2的可递
性来看,西餐>日本餐,由于前面中餐>西餐,则中餐>日本餐。但是,若从
七个人的选择顺序来看,主张中餐比日本餐好的只有1号,而其他人都认为日本餐比
中餐好。问题尚不仅于此,按照可递性,中餐将表现为社会选择结果.在此情况下,
只有1号的意见得到通过.这时,如果1号改变选择顺序,那么与其相适应的社会结
果将注定不以其他人的意志为转移,而是以1号的选择顺序为转移。
阿罗涉及的这个问题具有很大的代表性。阿罗阐释了采取所谓多数表决的决定规
则势必会随之出现独裁现象。我们通常认为多数表决是促成民主主义的决定原则,但
在现实中,它却不曾起到这种作用.
就民主主义社会而言,阿罗所谓的基于多数表达原理的投票结果有时会导致投票
的悖论效应,其观点颇具有重要意义。阿罗认为,投票的悖论并非经常发生,而具有
一定的偶然性。如果这种概率实在微乎其微的话,那么阿罗不可能定理的意义就会黯
然失色.对投票悖论产生的概率采取数学手段进行计算的是坎普布尔(C。Campbell)
和塔洛克(k)。
坎普布尔等人运用蒙特卡尔法来计算投票悖论产生的概率,并且指出,投票者数
量或选择值增加越多,产生悖论的可能性就越大.譬如,在投票者为3人,选择值为3
点的情况下,产生悖论效应的概率约为5。7%;当投票者增加至15人,选择值增加至
11点时,产生悖论效应的概率提高到50%.[⑤]也就是说,两次投票中就有一次悖论
现象出现。因而,对于每天都在频繁进行着各种会议和集会的民主主义社会来讲,决
不可能对如此之高的比率掉以轻心。
此外,涅米和维斯伯格也大大地推进了坎普布尔等人的计算.他们指出,在投票
者超过十人的情况下,以上投票悖论出现的概率基本无变化,而且选择值的多少对悖
论概率有相当大的影响。[⑥]
可见,在这种情景下,利用少数服从多数的投票机制,将产生不出一个令所有人满
意的结论。
阿罗不可能性定理是指,如果众多的社会成员具有不同的偏好,而社会又有多种
备选方案,那么在民主的制度下不可能得到令所有的人都满意的结果。
假设有甲、乙、丙三人,分别来自中国、日本和美国,而且是分别多年的好朋友.
三人久别重逢,欣喜之余,决定一起吃饭叙旧。但是,不同的文化背景形成了他
们不同的饮食习惯,对餐饮的要求各不相同,风格各异
甲:中餐>西餐〉日本餐乙:日本餐〉中餐>西餐丙:西餐〉日本餐>中餐如果用民
主的多数表决方式,结果如下所示:首先,在中餐和西餐中选择,甲、乙喜欢中
餐,丙喜欢西餐;
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
4/20
然后,在西餐和日本餐中选择,甲、丙喜欢西餐,乙喜欢日本餐;最后,在中餐
和日本餐中选择,乙、丙喜欢日本餐,甲喜欢中餐.三个人的最终表决结果如下:
中餐>西餐,西餐>日本餐,日本餐〉中餐所以,利用少数服从多数的投票机制,将
产生不出一个令所有人满意的结论,这就是著名的”投票悖论”
完整版本
阿罗的不可能定理
出自MBA智库百科(。com/)
阿罗的不可能定理(Arrow’sImpossibilityTheorem)
目录
[隐藏]
•1阿罗的不可能定理概述
•2阿罗不可能定理的孕育和诞生
•3阿罗的不可能定理的内容
•4阿罗的不可能定理的推理及学者的评价
•5参考文献:
[编辑]
阿罗的不可能定理概述
阿罗不可能定理是由1972年诺贝尔经济学奖的获得者之一阿罗首先陈述和
证明的。
1951年肯尼斯·约瑟夫·阿罗(KennethJ.Arrow)在他的现在已经成为经济
学经典著作的《社会选择与个人价值》一书中,采用数学的公理化方法对通行的
投票选举方式能否保证产生出合乎大多数人意愿的领导者或者说“
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
5/20
将每个个体表达的先后次序综合成整个群体的偏好次序"进行了研究.结果,他得
出了一个惊人的结论:绝大多数情况下是——不可能的!更准确的表达则是:当
至少有三名候选人和两位选民时,不存在满足阿罗公理的选举规则。或者也可以
说是:随着候选人和选民的增加,“程序民主"必将越来越远离“实质民主"。从
而给出了证明一个不可思议的定理:假如有一个非常民主的群体,或者说是一个
希望在民主基础上作出自己的所有决策的社会,对它来说,群体中每一个成员的
要求都是同等重要的。一般地,对于最应该做的事情,群体的每一个成员都有自
己的偏好。为了决策,就要建立一个公正而一致的程序,能把个体的偏好结合起
来,达成某种共识。这就要进一步假设群体中的每一个成员都能够按自己的偏好
对所需要的各种选择进行排序,对所有这些排序的汇聚就是群体的排序了。
[编辑]
阿罗不可能定理的孕育和诞生
阿罗不可能定理的证明并不难,但是需要严格的数学逻辑思维。关于这个定
理还有一段情节颇为曲折的故事。
阿罗在大学期间就迷上了数学逻辑:读四年级的时候,波兰大逻辑学家塔斯
基(Tarski)到阿罗所在的大学讲了一年的关系演算,阿罗在他那里接触到诸如
传递性、排序等概念在此之前.阿罗对他所着迷的逻辑学还是全靠自学呢。
管理定律
AL续
安慰剂效应卢维斯定理
阿尔巴德定理蓝斯登定律
暗箱模式蓝斯登原则
阿尔布莱特法则垃圾桶理论
阿姆斯特朗法则蓝柏格定理
阿什法则雷鲍夫法则
艾奇布恩定理懒蚂蚁效应
阿罗的不可能
定理
牢骚效应
艾德华定理洛克忠告
艾科卡用人法则拉图尔定律
阿伦森效应鲁尼恩定律
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
6/20
暗示效应拉锯效应
安泰效应M
氨基酸组合效应木桶原理
B墨菲定律
彼得原理蘑菇管理定律
不值得定律马太效应
贝尔效应名片效应
保龄球效应米格—25效应
布里特定理马蝇效应
比伦定律末位淘汰法则
柏林定律麦克莱兰定律
巴菲特定律目标置换效应
彼得斯定律梅考克法则
白德巴定理摩斯科定理
布利丹效应美即好效应
波特定律马斯洛理论
布利斯定理曼狄诺定律
波特法则冒进现象
布朗定律毛毛虫效应
伯恩斯定律摩尔定律
布利斯原则木桶歪论
名人效应
拜伦法则N
冰淇淋哲学鲶鱼效应
比林定律南风法则
邦尼人力定律尼伦伯格原则
玻璃天花板效应凝聚效应
巴纳姆效应纳尔逊原则
半途效应
希尔十七项
成功原则
贝尔纳效应鸟笼效应
贝勃规律O
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
7/20
边际效应奥卡姆剃刀定律
菠菜法则奥格威法则
标签效应奥狄思法则
杯子理论奥美原则
弼马瘟效应欧弗斯托原则
搬铁块试验P
C螃蟹效应
长尾理论帕累托法则
刺猬法则帕金森定律
长鞭效应皮格马利翁效应
磁石法则破窗效应
磁力法则皮尔斯定律
蔡戈尼效应皮京顿定理
从众效应皮尔·卡丹定理
权威效应披头士法则
蔡格尼克记忆效应攀比效应
超限效应Q
全球化链条定律群体压力
传染效应乔布斯法则
参与定律犬獒效应
成事定理青蛙法则
拆屋效应乔治定理
出丑效应秋尾法则
D强手法则
多米诺骨牌效应齐加尼克效应
达维多定律情绪效应
倒金字塔管理法R
定位法则热炉法则
大荣法则柔性管理法则
杜利奥定理儒佛尔定律
杜根定律洛克定律
迪斯忠告人性定理
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
8/20
灯塔效应|锐化效应
达维多夫定律S
德尼摩定律三强鼎立法则
杜嘉法则手表定律
杜邦定律水坝式经营法
登门槛效应首因效应
叠补丁效应生态位法则
等待效应
德西效应
狄伦多定律
多看效应
E生鱼片理论
250定律隧道视野效应
恶魔效应
F
500强企业经
典管理法则
反暗示效应
弗洛斯特法则双木桶理论
辐射效应失真效应
适才适所法则
飞轮效应史坦普定理
弗里施法则史华兹论断
肥皂水效应舍恩定理
凡勃伦效应史提尔定律
法约尔原则斯坦纳定理
费斯诺定理矢泽定律
费斯法则“4+2”法则
复壮效应思维的定势效应
反馈效应社会惰化效应
反木桶原理苏东坡效应
弗洛伊德口误森林效应
峰终定律
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
9/20
G圣人理论
声誉磁场
光环效应T
格雷欣法则同仁法则
身体语言
古狄逊定理跳蚤效应
沟通的位差效应特雷默定律
管理沟通论踢猫效应
沟通无限论托利得定理
古德曼定理特里法则
古德定律铁钉效应
格利定理蜕皮效应
孤峰原理汤水效应
果子效应托伊论断
过度理由效应投射效应
过度学习效应同群效应
功能固着心理头鱼理论
感觉剥夺实验鸵鸟政策
铁锹试验
态度改变—
糖果实验
W
感情效应王永庆法则
共生效应韦特莱法则
箍桶理论威尔逊法则
H威尔德定理
花盆效应翁格玛丽效应
花生试验
环境蓄势
黑洞效应
蝴蝶效应沃尔森法则
霍桑效应沃尔顿法则
华盛顿合作定律沃森定律
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
10/20
猴子理论王安论断
互惠关系定律韦尔奇原则
杰亨利法则温德定律
海潮效应无折扣法则
横山法则沃特曼定律
海恩法则武器效应
猴子大象法则X
赫勒法则新木桶定律
信心获得
怀特定律斜坡球体定律
哈默定律夏皮罗法则
坏苹果法则
西点军校的
经典法则
霍布森选择效应希望效应
海因里希法则虚荣效应
和谐定理Y
哈罗效应羊群效应理论
J“100-1=0"定律
酒与污水定律鱼缸理论
激励倍增法则
影响世界的
100个定律
金鱼缸效应蚁群效应
吉格勒定理雅格布斯定理
吉尔伯特定律印刻效应
吉格定理150定律
吉德林法则
Yerkes—Dodson
法则
竞争优势效应约翰逊效应
监狱角色模拟
实验
野鸭精神
棘轮效应邮票效应
近因效应优先效应
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
11/20
经验的逻辑
推理效应
优势富集效应
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
11/20
金属切削试验延迟满足实验
K因果定律
苛希纳定律异性心理
快鱼法则雁阵效应
异性效应
酝酿效应
拥有效应
坎特法则Z
卡贝定律智猪博弈理论
克里奇定理坠机理论
柯维定理自来水哲学
卡尔岑定理煮蛙效应
刻板效应自吃幼崽效应
L自我参照效应
雷尼尔效应自我选择效应
零和博弈帐篷理论
柯维定理最高气温效应
卡尔岑定理詹森效应
雷尼尔效应责任分散效应
蟑螂效应
座椅舒适感
[编辑]
后来,阿罗考上研究生.在哈罗德·霍特林(HaroldHotelling)的指导下攻
读数理经济学他发现,逻辑学在经济学中大有用武之地就拿消费者的最优决策来
说吧,消费者从许多商品组合中选出其最偏好的组台、这正好与逻辑学上的排序
概念吻台.又如厂商理论总是假设厂商追求利润最大化,当考虑时间因素时,因为
将来的价格是未知的厂商只能力图使基于期望价格的期望利润最大化。我们知
道、现代经济中的企业一般是由许多股东所共同拥有100个股东对将来的价格可
能有100种不同的期望,相应地根据期望利润进行诸如投资之类的决策时便有
100种方案。那末,问题如何解决呢?一个自然的办法是由股东(按其占有股份多
少)进行投票表决,得票最多的方案获胜这又是一个排序问题阿罗所受的逻辑训
练使他自然而然地对这种关系的传递性进行考察结果轻而易举地举出了一个反
例。
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
12/20
阿罗第一次对社会选择问题的严肃思考就这样成为他学习标准厂商理论的
一个副产品不满足传递性的反例激起了阿罗的极大兴趣,但同时也成为他进一步
研究的障碍因为他觉得这个悖论素未谋面但又似曾相识.事实上这的确是一个十
分古老的悖论,是由法国政治哲学家、概率理论家贡多赛在1785年提出的但是
阿罗那时对贡多赛和其他原始材料一无所知,于是暂时放弃了进一步的研究.这
是1947年。
次年,在芝加哥考尔斯(Cowles)经济研究委员会,阿罗出于某种原因对选
择政治学发生了浓厚的兴趣:他发现在某些条件下,“少数服从多数"的确可以
成为一个合理的投票规则。但是一个月后,他在《政治经济学杂志》里发现布莱
克(Black)的一篇文章已捷足先登,这篇文章表达了同样的思想看来只好再一次
半途而废了。阿罗没有继续研究下去其实还有另一层的原因,就是他一直以严肃
的经济学研究为己任,特别是致力于运用一般均衡理论来建立一个切实可行的模
型作为经济计量分析的基础他认为在除此以外的“旁门左遭’中深究下去会分散
他的精力。
1949年夏天,阿罗担任兰德公司(Rand)的顾问.这个为给美国空军提供咨
询而建立起来的公司那时的研究范围十分广泛,包括当时尚属鲜为人知的对策
论。职员中有个名叫赫尔墨([[]Helmer]])的哲学家试图将对策论应用于国家关
系的研究,但是有个问题令他感到十分棘手:当将局中人诠释为国家时,尽管个
人的偏好是足够清楚的,但是由个人组成的集体的偏好是如何定义的呢?阿罗告
诉他,经济学家已经考虑过这个问题,并且一个恰当的形式化描述已经由伯格森
(Bergson)在1938年给出。伯格森用一个叫做社会福利函数的映射来描述将个
人偏好汇集成为社会偏好的问题,它将诸个人的效用组成的向量转化为一个社会
效用虽然伯格森的叙述是基于基数效用概念的,但是阿罗告诉赫尔墨,不难用序
数效用概念加以重新表述.于是赫尔墨顺水推舟,请阿罗为他写一个详细的说明
当阿罗依嘱着手去做时,他立即意识到这个问题跟两年来一直困扰着他的问题实
际上是一样的。既然已经知道“少数服从多数“一般来说不能将个人的偏好汇集
成社会的偏好,阿罗猜测也许会有其他方法。几天的试探碰壁之后,阿罗怀疑这
个问题会有一个不可能性的结果。果然,他很快就发现了这样一个结果;几个星期
以后,他又对这个结果作进一步加强.
阿罗不可能定理就这样呱呱坠地了。
从1947年萌发胚芽到t950年开花结果,阿罗不可能定理的问世可谓一波三
折,千呼万唤始出来,而且颇有点无心插柳的意味。但是,正是在这无心背后的
对科学锲而不舍的追求,才使逻辑学在社会科学这块他乡异壤开出一朵千古留芳
的奇葩这不能不说是耐人寻味的。
[编辑]
阿罗的不可能定理的内容
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
13/20
阿罗的不可能定理源自孔多塞的“投票悖论”,早在十八世纪法国思想家孔
多赛就提出了著名的“投票悖论":假设甲乙丙三人,面对ABC三个备选方案,
有如图的偏好排序.
甲(a>b>c)
乙(b>c>a)
丙(c>a>b)
注:甲(a>b>c)代表——甲偏好a胜于b,又偏好b胜于c。
1。若取“a”、“b"对决,那么按照偏好次序排列如下:
甲(a>b)
乙(b>a)
丙(a>b)
社会次序偏好为(a>b)
2.若取“b"、“c”对决,那么按照偏好次序排列如下:
甲(b>c)
乙(b>c)
丙(c>b)
社会次序偏好为(b>c)
3.若取“a"、“c"对决,那么按照偏好次序排列如下:
甲(a>c)
乙(c>a)
丙(c>a)
社会次序偏好为(c>a)
于是我们得到三个社会偏好次序——(a>b)、(b>c)、(c>a),其投
票结果显示“社会偏好”有如下事实:社会偏好a胜于b、偏好b胜于c、偏好c
胜于a.显而易见,这种所谓的“社会偏好次序”
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
14/20
包含有内在的矛盾,即社会偏好a胜于c,而又认为a不如c!所以按照投票的大
多数规则,不能得出合理的社会偏好次序。
阿罗不可能定理说明,依靠简单多数的投票原则,要在各种个人偏好中选择
出一个共同一致的顺序,是不可能的。这样,一个合理的公共产品决定只能来自
于一个可以胜任的公共权利机关,要想借助于投票过程来达到协调一致的集体选
择结果,一般是不可能的.
[编辑]
阿罗的不可能定理的推理及学者的评价
为了简单起见,假定,每个个体至少有3个供排列的选项,可以用各种味道
的饼干为选项的例子,如,香草饼干(V)、巧克力饼干(C)和草莓饼干(S),每
一个人要形成一个序列,表示出他对3种味道的喜爱程度,如V〉S〉C,表示这个
人最喜欢香草饼干,其次是草莓饼干,最后是巧克力饼干.设有甲乙丙三人作选
择,他们的个人偏好为:
甲:V>C〉S
乙:C>S>V
丙:S〉V〉C
表1投票悖论
投票者对不同选择方案的偏好次序
甲VCS
乙CSV
丙SVC
用民主的多数表决方式,如果三个人都能充分表达自己的意见,则结果必然
如下所示:
首先,在V和C中选择,甲、丙喜欢V,乙喜欢C;
然后,在C和S中选择,甲、乙喜欢C,丙喜欢S;
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
15/20
最后,在V和S中选择,乙、丙喜欢S,甲喜欢V.
这样三个人的最终表决结果如下:
V>C,C〉S,S〉V可见,利用少数服从多数的投票机制,将产生不出一个令所
有人满意的结论,这就是著名的“投票悖论”(paradoxofvoting)。这个投票悖
论最早是由康德尔赛(Coudorcet,Marquisde)在l8世纪提出的,因而该悖论又
称为“康德尔赛效应",而利用数学对其进行论证的则是阿罗。
用数学语言来说,即:假设群体S上有m个个体成员,群体中出现的各种事
件构成一个集合X,每个个体对每一事件都有自己的态度,即每个人都对集合X
有一个偏好关系>
i
=1,2,…,m。即可以按自己的偏好为事件排序。定义群体的
偏好为:其中P是一种由每个个体偏好得出群体偏好的
规则。按这个规则从个体排序(偏好)得到群体排序(偏好),而且这个排序符合
民主社会的民主决策的各种要求。注意这个排序是自反的,即如果A>B,那么,B〈A;
是可传递的,即如果A〉B,B>C,则有A〉C;并且还是完全的,即要么A〉B,要么
B〉A,二者只有其一而且必有其一。这首先要考察一下民主社会的民主决策的各
种要求是什么,阿罗用4个公理(有时表述为5条,把公理1分为两条)表述出这
些要求。他用的是数学方法,符号化的公理和数理逻辑的证明方法,为了简单地
说明问题,我们采用了自然语言解释。
公理1个体可以有任何偏好;而且是民主选择—-每个社会成员都可以自由
地按自己的偏好进行选择(数学上称为原则U—无限制原则:〉
i
,u=1,2,…,m
在x上的定义方式无任何限制)。
公理2不相干的选择是互相独立的;(数学上称为原则I——独立性原则:
对于X中的两个事件X和Y,对它们做出的偏好判断与X
中的任何其他事件无关)。
公理3社会价值与个体价值之间有正向关联;(数学上称为原则P-一致性原
则:如果对X中的两个事件X和Y,对于所有的i都有x<
i
Y,那么X<
s
Y。这里x<
i
Y
表示X>
i
Y不成立。就是说,每人都有同样明确态度的两件事,社会也应该有同
样的态度.)
公理4没有独裁者——不存在能把个体偏好强加给社会的可能。(数学上称
为原则D—-非独裁原则:不存在某个i,使得阿罗证明,满
足这4条公理表述的要求的民主决策的规则是不存在的,就是著名的“阿罗不可
能性定理":如果X中的事件个数不小于3,那么就不存在任何遵循原则U,P,I,D
的规则(称为“社会福利函数”)。这表明满足所有一般条件的民主选择要么是
强加的,要么就是独裁的结果。
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
16/20
换句话说,阿罗不可能性定理指出,多数规则(majorilyrule)的一个根本缺
陷就是在实际决策中往往导致循环投票。
在得多数票获胜的规则下,每个人均按照他的偏好来投票.不难看出,大多
数人是偏好X胜于Y,同样大多数人也是偏好Y胜于Z。按照逻辑上的一致性,
这种偏好应当是可以传递的(transitivity),即大多数人偏好X胜于Z。但实
际上,大多数人偏好Z胜于X。因此,以投票的多数规则来确定社会或集体的选
择会产生循环的结果。结果,在这些选择方案中,没有一个能够获得多数票而通
过,这就是“投票悖论”,它对所有的公共选择问题都是一种固有的难题,所有的
公共选择规则都难以避开这两难境地。
那么,能不能设计出一个消除循环投票,做出合理决策的投票方案呢?阿罗的
结论是:根本不存在一种能保证效率、尊重个人偏好、并且不依赖程序(agenda)
的多数规则的投票方案。简单地说,阿罗的不可能定理意味着,在通常情况下,
当社会所有成员的偏好为已知时,不可能通过一定的方法从个人偏好次序得出社
会偏好次序,不可能通过一定的程序准确地表达社会全体成员的个人偏好或者达
到合意的公共决策。
这个结果是令人震动的:一个社会不可能有完全的每个个人的自由-—否则
将导致独裁;一个社会也不可能实现完全的自由经济——否则将导致垄断.人们
对社会的认识达到一个新的高度。因此阿罗的不可能定理一经问世便对当时的政
治哲学和福利经济学产生了巨大的冲击,甚至招来了上百篇文章对他的定理的驳
斥。李特尔、萨缪尔森试图以与福利经济学不相干的论点来驳倒阿罗的不可能定
理,但又遭到肯普、黄有光和帕克斯的反驳,他们甚至建立了在给定个人次序情
况下的不可能性结果。
事实上,阿罗的不可能性定理经受住了所有技术上的批评,其基本理论从来
没有受到重大挑战,可以说是无懈可击的,于是阿罗不可能定理似乎成为规范经
济学发展的一个不可逾越的障碍。怎样综合社会个体的偏好,怎样在理论上找到
一个令人满意的评价不同社会形态的方法,成为一个世界性难题.这时候出现了
阿马弟亚·森(AmartyaKumarSen,1933一)从20世纪60年代中期起,森在工具
性建设方面的贡献减少了这种悲观主义色彩。森在这方面的研究推动了规范经济
学跨越这个障碍向前发展。他的研究工作不仅丰富了社会选择理论的原则,而且
开辟了一个新的、重要的研究天地。森1970年的著作《集体选择和社会福利》
是其最重要的一部著作,它使许多研究者恢复了对基本福利的兴趣。另外这本书
还具有哲学的风格,为规范问题的经济分析提供了一个新的视角,克服了阿罗不
可能定理衍生出的难题,从而对福利经济学的基础理论作出了巨大的贡献。
森所建议的解决方法其实非常简单。森发现,当所有人都同意其中一项选择
方案并非最佳的情况下,阿罗的“投票悖论”就可以迎刃而解。比如,假定所有
人均同意V项选择方案并非最佳,这样上面的表1就变为表2,仅仅甲的偏好由
于同意“V并非最佳"而V和C的顺序互换了一下,别的都不变。
表2投票悖论的解决
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除
17/20
投票者对不同选择方案的偏好次序
甲CVS
乙CSV
丙SVC
在对V和C两种方案投票时,C以两票(甲乙)对一票(丙)而胜出于V(C>V);
同理,在对V和S以及C和S分别进行投票时,可以得到S以两票(乙丙)对一票
(甲)而胜出于V(S〉V);C以两票(甲乙)对一票(丙)而胜出于S(C>S)。这
样,C〉S—S〉V—C>V,投票悖论就此宣告消失,唯有C项选择方案得到大多数票
而获胜.
森把这个发现加以延伸和拓展,得出了解决投票悖论的三种选择模式:
(1)所有人都同意其中一项选择方案并非最佳;
(2)所有人都同意其中一项选择方案并非次佳;
(3)所有人都同意其中一项选择方案并非最差。
森认为,在上述三种选择模式下,投票悖论不会再出现,取而代之的结果是
得大多数票者获胜的规则总是能达到唯一的决定。
一个更完整、更简单也更具一般意义的不可能性定理,是艾利亚斯在2004年发表的.
这一定理声称:如果有多于两个可供选择的社会状态,那么,任何社会集结算子,只要满足“偏
好逆转”假设和“弱帕累托"假设,就必定是独裁的。特别地,阿罗的社会福利函数和森的
社会选择函数,都是社会集结算子的特例,并且偏好逆转假设在阿罗和缪勒各自定义的社会
选择框架内分别等价于阿罗的“独立性假设”和缪勒的“单调性假设",从而阿罗的不可能
性定理、森的最小自由与帕累托效率兼容的不可能性定理、缪勒和塞特斯维特的一般不可能
性定理,均可视为艾利亚斯一般不可能性定理的特例。艾利亚斯的不可能性定理有怎样的经
济学和社会学结论是人们正在研究的问题。
本文发布于:2023-03-10 17:43:52,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/zuowen/1678441433206319.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:费斯诺定理.doc
本文 PDF 下载地址:费斯诺定理.pdf
留言与评论(共有 0 条评论) |