细胞内蛋白质的定位信号序列
1.内质网信号序列(ERsignalquence)2.驻留信号(retentionsignal):
①ER驻留信号(包括KDEL即Lys-Asp-Glu-Leu和HDEI即His-Asp-Glu-Ile两个4肽
信号序列);
②ER回收信号(ERretrievalsignal,可溶蛋白的KDEL和ER膜蛋白上的KKXX)
3.核输入信号(nuclearimportsignal):也称NLS,常含Pro-Lys-Lys-Lys-Lys-Arg-
Val
4.核输出信号(nuclearexportsignal):核糖体蛋白上相间排列的疏水性氨基酸
5.过氧化物酶体引导信号(peroxisomaltargetingsignal,PTS):C端的SKL即Ser-
Lys-Leu
6.转运肽(transitpeptide):即导肽,进入线粒体蛋白的N端的带正电的氨基酸(Arg)
和不带电的氨基酸(Ser)构成的信号序列
一、内质网信号肽
内质网蛋白定位信号总体可以分为返回信号和保持信号。内质网逃逸的蛋白主要通过
COPⅠ有被小泡将其返回内质网,因此区分保持信号与返回信号一个很重要的手段是研究
信号片段与运输小泡COPⅠ各亚基的相互作用情况。例如在研究甲硫蛋白(TPN)定位信号
过程中,Paulsson等通过Co-IP发现具有“KKXX>”序列的TPN能与COPI相互作用,
而C端突变后的GFP-TPN-aa不与COPI发生相互作用,提示“KKXX>”为TPN定位信
号,且该信号通过COPI返回于内质网。蛋白转运到高尔基体后会被修饰,人们可以利用
不同的糖基程度区分保持信号与返回信号。例如在酵母[6]中,高尔基复合体有N-寡糖转
移酶(OTa活性,并可将底物蛋白α-1,6-苷露糖基化,被α-1,6-苷露糖基化的
蛋白则通过返回信号返回内质网。而哺乳动物[7]中运出的内质网蛋白被N-已酰氨基半乳
糖转移
酶(GnT)修饰和十六烷基化,然后被岩藻糖转移酶修饰,因此可被N-乙酰氨基半乳
糖(GalNAc)的亲合素识别并着色的蛋白为返回信号介导定位。此外,经过高尔基体修饰
的蛋白能抵抗内切糖苷酶H(endoH)的酶切效应,因此这些蛋白的定位也依赖返回信号。
1、内质网定位信号
如前所述,内质网蛋白定位信号可分为保持信号和返回信号。保持信号中研究较多
的是适用于Ⅱ型内质网膜蛋白的双精氨酸信号[<X(2,3)-RR],返回蛋白研究较多
的为适用于内质网腔蛋白的“H/KDEL>”信号及适用于Ⅰ型内质网膜蛋白的双赖氨酸信
号(UUUX>,其中3个U中至少2个为赖氨酸,X为任意氨基酸)。
1.1内质网保持信号
双精氨酸信号[<X(2,3)-RR]最早发现于组织相容性复合体Ⅱ(MHCⅡ),
Zerangue进一步确定了双精氨酸信号的有效信息,此外该信号一般与双亮氨酸信号并存,
并在复合体的形成及转运中起调节作用。双精氨酸信号存在于大多数膜表面功能复合体的
亚基(多为Ⅱ型跨膜蛋白)中。如G-蛋白偶联γ-氨基异丁酸受体亚基(GABAB1)利用
双精氨酸信号定位于内质网,当GABAB1与GABAB2结合后双精氨酸信号被掩盖或被去除,
复合体被运出内质网并在膜表面形成功能复合体。此外TRAM、钾离子通道亚基Kir1.1等
都通过双精氨酸信号调节膜表面功能复合体的运出。既然双精氨酸信号主要存在于细胞膜
表面功能复合体中,必然存在信号失活机制,以调节膜表面复合体的量[20]。双精氨酸信
号的失活机制可总结为5种:①与复合体其他亚基形成功能复合体掩盖双精氨酸信号,
如MHCⅡβ链;②通过与14-3-3家族蛋白结合,如ADAM22蛋白;③通过选择性剪接
形成能与信号区相互作用的PDZ结合结构域,如N-甲基-D-门冬氨酸受体亚基NR1-1
(NMDAR)和红藻氨酸/海藻酸受体(KAR);④通过蛋白激酶A(PKA)和蛋白激酶C
(PKC)的磷酸化,如NMDA受体NR1亚基;⑤通过双亮氨酸信号或溶酶体定位信号抵消双
精氨酸信号。
由于COPⅠ在“K(X)KXX>”信号的识别与返回中起重要作用,同时α与β'亚
基中的WD40结构域在识别中起重要作用,那么COPⅠ在双精氨酸信号识别中是否具有作用
呢?研究表明COPⅠ复合体在某些带有双精氨酸信号蛋白的返回中起一定作用,但是作用
并不明显,且涉及的蛋白数量有限。Hardt等通过研究双精氨酸信号蛋白糖基化修饰情况,
发现仅有极少数的蛋白有糖基化修饰,证明该信号为保持信号而非返回信号。是什么机制
将具有双精氨酸信号的蛋白保留在内质网中,还有待进一步研究。
1.2返回信号
逃逸的内质网蛋白进入运输小泡并在膜囊结构中被修饰后,能介导其重新运回内质网
的信号称为返回信号。
1.2.1内质网腔蛋白的返回信号
内质网腔蛋白返回信号的主要代表是“H/KDEL>”,在哺乳动物中为“KDEL>”,
而在酵母中则为“HDEL>”。内质网中许多蛋白依靠此类信号返回定位于内质网,
比如“HDEL>”介导蛋白二硫键异构酶(PDI)的返回,“ADEL/DDEL/HDEL>”介
导免疫球蛋白重链结合蛋白(BiP)的返回,“HIEL/KDEL>”介导甘油三酯水解酶
(TGH)返回等。此外,也有人报道“KDEL>”信号存在于Ⅱ型跨膜蛋白中,但此类蛋白
数量较少。此类蛋白可能通过“H/KDEL>”信号与COPⅠ的间接相互作用返回内质网腔。
如相对分子质量为39000的受体相关蛋白(RAP)是一种定位于内质网的分子伴侣,可保
证低密度脂蛋白受体(LDLR)正确折叠,其C端的“HNEL/KDEL”能保证RAP返回内
质网。
由于高尔基体和内质网腔中具有不同的pH值,ERD2p在高尔基体中结合RAP的“H
/KDEL”基序[39],并在内质
网中将蛋白释放。此外,对蛋白ERD2.1、ERD2.2的表达进行干扰后,RAP的定位
明显受到影响。这表明含有“H/KDEL>”信号的蛋白可通过ERD蛋白介导,并与
COPⅠ发生相互作用,从而返回内质网腔。
1.2.2内质网膜蛋白的返回
双赖氨酸信号(UUUX>,其中3个U中至少2个为赖氨酸,X为任意氨基酸)是
Nilsson
等在腺病毒3中发现的,主要存在于Ⅰ型内质网膜蛋白中,该信号在不同种属间具有
一定的保守性。研究表明,该信号中的-4位赖氨酸可以转移到-5位,但精氨酸和组氨
酸不能取代-4位的赖氨酸。事实上赖氨酸附近的氨基酸也会影响定位效率,如果两侧
氨基酸为丝氨酸或丙氨酸时能介导蛋白定位,但如果是氨基乙酸或脯氨酸时则介导定位
效率较弱,此外该信号靠近跨膜结构域时介导定位效率较高。许多内质网蛋白通过此信
号定位于内质网,如TPNC端“KKXX”序列可保证其定位于内质网,将双赖氨酸突变为双
丙氨酸后,则TPN不定位于内质网中,提示“KKXX>”是TPN的定位信号。双赖氨酸
信号主要通过直接与运输囊泡COPⅠ亚基作用使蛋白质返回内质网。COPⅠ是一个蛋白复合
体,由α、β、β'、ε、γ、ζ、δ等7个亚基组成,Crosslinking交联实验证明
双赖氨酸信号与γ亚基作用,酵母双杂实验证明信号与α亚基作用,遗传突变证明α、
β'、γ、δ和ζ等5个亚基与双赖氨酸信号作用。
2.其他定位信号
内质网蛋白中,有许多具有不明确序列特点的定位信号或多种定位信号,总体来说
这些定位信号不具有明确性和广泛性。内质网定位信号中一类重要的信号为跨膜结构域,
根据蛋白的不同要求可分别利用跨膜的二级结构、跨膜的长度或疏水性等作为定位信号。
如Ryanodine受体(RyR)通过其第4个跨膜区与第1个跨膜结构域定位于内质网。跨膜
结构被Rer1p识别而返回内质网,Rer1p由188个氨基酸残基组成,定位于高尔基体,
包含4个跨膜结构域。如Rer1蛋白识别Sec12p、γ-分泌酶等跨膜结构域,并辅助
COPⅠ将其返回内质网。也有少数蛋白通过特异的二级结构定位。如成熟的T-细胞抗原受
体(TCR)由6个不同的多肽亚基组成,即α、β、γ、ε、δ和ζ,一般情况下ε、
ζ稳定存在于内质网。Mallabiabarrena等利用点突变的方式发现Lyr177、Leu180和
Arg183在CD3-ε的定位中具有保守性,同时核磁共振显示以Lyr177及其下游Leu180
为基础形成的α螺旋使Lyr177和Leu180并列靠近,紧接着为β转角,使Arg183靠
近Leu180,此二级结构可能是保证蛋白内质网定位的真正原因。有些蛋白同时存在2种
定位信号。如C端的“KDEL”与N端的疏水区共同帮助钙网蛋白(CRT)实现定位;N端
信号区和C端疏水区都能单独完成Secl2p的内质网定位;C端定位信号和疏水区的长度
保证细胞色素b5定位于内质网;CLN6通过C端疏水区和N端胞质区定位于内质网等。
此外,有些蛋白通过与其他内质网蛋白作用而定位于内质网。如BAP31在很多内质
网膜蛋白的定位中起作用,Szczesna-Skorupa等发现,CYP2C2前29个氨基酸的膜结构
通过与BAP31作用而定位于内质网;C-反应蛋白(CRP)与具有“HIEL/HTEL>”信号
的羧酸酯酶(CE)相互作用而定位于内质网;UGT通过与神经酰胺半乳糖转移酶(cer-
GalT)相互作用而定位于内质网等。
二.线粒体信号肽
线粒体蛋白的转运
指导前体蛋白进入线粒体的信号肽是目前被研究的最多和相对最清楚的(Alberts等
2021)。绝大多数线粒体定位的前体蛋白在其N端存在一段可以被剪切的信号序列,称为
前导序列(prequence)或前导肽(prepeptide)。它们一般是由10~80个氨基酸组成的带
有一段疏水序列和一段正电荷序列(表面)的两亲多肽螺旋。研究表明,不仅N端前导肽本
身对线粒体前体蛋白的转运是必需的,其所处的位置也至关重要。将前导肽从N端转移到
C端之后,虽然蛋白还可以转运至线粒体中,但是蛋白在转运时C端与N端的方向却颠倒
了(F?lsch等1998)。
线粒体基质蛋白的转运是由位于外膜的TOM蛋白复合体[translocaoftheouter
mitochondrialmembrane(TOM)complex]和位于内膜上的TIM23蛋白复合体(transloca
oftheinnermitochondrialmembrane23complex)共同完成的。TOM蛋白复合体能够识
别胞质中的前体蛋白并使其与伴侣分子解离,使前体蛋白通过TOM复合体自身形成的通
道而进入线粒体膜间隙(intermembranespace,IMS),或者介导一些外膜定位的蛋白的跨
膜。它由7亚基构成,其中Tom20亚基和Tom70亚基是识别前体蛋白的主要受体,并与
伴侣分子Hsp70或者Hsp90相互作用,在ATP提供能量的前提下,使前体蛋白与伴侣分
子解离并使其进入TOM复合体形成的跨膜通道(Young等2021)。核磁共振结构分析显示,
Tom20亚基的胞质面与前体蛋白相互作用处存在一个结合前导肽表面疏水结构的沟槽(Abe
等2000),所以一般认为,Tom20亚基是前体蛋白N端前导肽的主要受体。而Tom22亚基
则辅助Tom20亚基与前体蛋白结合(Neupert和Herrmann2021)。其他的4个亚基Tom40、
Tom5、Tom6和Tom7组成了TOM复合体的跨膜通道结构。TIM23复合体也是多由亚基组成,
它转运所有的线粒体基质蛋白、大部分的内膜定位的蛋白及一些膜间隙定位的蛋白
(Neupert和Herrmann2021),由TIM23复合体介导的跨膜转运需要两种来源的能量供
应――ATP水解供能和膜两侧电位而形成的电势能(??)(Mokranjac和Neupert2021)。
前体蛋白通过TOM复合体进入线粒体膜间隙之后,TIM23复合体通过Tim50亚基和Tim23
亚基与其前导肽结合,并在能量供应的前提下使其通过内膜。由Tim44亚基将其呈递给基
质中结合ATP的mtHsp70,mtHsp70就像TIM23的一个亚基结合在其靠线粒体基质的一面,
而且mtHsp70对未折叠的蛋白有着很高的亲和力,一旦前体蛋白从TIM23复合体中出现
在基质中时,mtHsp70就牢牢的结合上去(Alberts等2021)。Tim14亚基继而诱导ATP水
解,导致Hsp70亚基与TIM23复合体解离。mtHsp70的结合不仅起稳定前体蛋白的作用,
还防止正在转运进基质的蛋白“缩回”膜间隙中(Neupert和Herr-mann2021)。一般情
况下,当前体蛋白的前导肽酶切位点进入基质的时候,就会在基质信号肽酶
(mitochondrial-processingpeptida,MPP)的作用下将其切除(Braun和Schmitz1997;
Gakh等2002)。
线粒体外膜定位的蛋白都是在细胞质中合成的,包含?-桶状蛋白和??螺旋蛋白两种
类型。线粒体?-桶状蛋白的前体由TOM复合体转运至膜间隙之后与一些小Tim蛋白结合,
继而由另外一种位于线粒体外膜的转运子介导其跨膜定位,这个转运子被命名为TOB
(topogenesisofmitochondrialouterembrane?-barrel)复合体(Paschen等2021)或
SAM(sortingandasmblymachinery)复合体(Wiedemann等2021)。??螺旋蛋白根据其
定位信号序列在多肽中的位置的不同有着不同的转运机制。信号序列位于N末端的?螺旋
蛋白通过Mim1(mitochondrialimport1)插入外膜;而有些信号序列位于中部和C末端
的??螺旋蛋白则与?-桶状蛋白有着相同的转运机制,另一些的转运机制目前尚不了解
(Schmidt等2021)。
线粒体内膜定位的蛋白质绝大多数来自细胞质,通过TOM复合体进入膜间隙后,主要
以三种不同的方式定位于内膜(Neupert和Herrmann2021)(图2)。第一种是依赖TIM22
的方式,即进入膜间隙的前体蛋白与小Tim蛋白结合并被传递给TIM22复合体,由TIM22
介导其跨膜定位,这个过程依赖膜两侧的电位差。第二种被称为转移终止方式thestop-
transferpathway),采用这种方式的多数为单次跨膜蛋白。因为在前体蛋白的中部存在
能被IM23复合体识别的
一段水性序列,所以当前体蛋白在N端前导肽的引导下以N→C的顺序进入线粒体
基质时,跨膜转移就会终止,从而形成跨膜蛋白。以第三种方式跨膜的一般是一些多次跨
膜蛋白,这种机制目前还不是很了解,即蛋白先被转运至基质中与mtHsp70结合,在内膜
上的OXA1复合体介导下进行线粒体内膜跨膜定位。另外,线粒体膜间隙中也存在着许多
具有重要功能的蛋白,它们一般没有可以被剪切的信号肽序列,MIA(mitochondrial
intermembranespaceasmbly)复合体在这些富含半胱氨酸残基的膜间隙蛋白的定位过
程中发挥了重要的作用。MIA由Mia40和Erv1(esntialforrespirationand
viability1)两种组分构成。Erv1能够通过转移二硫键给Mia40从而使其发生氧化,而
Mia40能够识别通过TOM复合体进入膜间隙的前体蛋白蛋白中所包含的疏水序列或半胱氨
酸残基等信号序列(Sideris等2021),并能通过形成的瞬时二硫键与其结合。Mia40就像
一个二硫键载体,通过将二硫键转移给前体蛋白从而促进其氧化形成成熟的构象(Schmidt
等2021)。
三、入核信号肽
与其他一些采用翻译后转运机制的蛋白不同的是,在细胞质中合成的核定位蛋白一般
通过镶嵌在双层核膜上的核孔复合体(nuclearporecomplex,NPC)进入细胞核,而核定位
信号序列(nuclearlocalizationsignal,NLS)在该过程中发挥了重要的作用。与一般蛋白
的信号肽不同,核定位蛋白的NLS几乎可以位于蛋白序列的任何部位,而且一般情况下不
被切除,因为其参与了蛋白质行使功能的过程。
研究得最多的是依赖于核转运受体Importin?/??的经典蛋白质入核机制(Gasiorowski
和Dean2021;周鸣等2021;Lange等2021)。首先Importin?-RanGDP复合体在NPC的胞
质面与RanBP2结合(图3-A),继而货物蛋白通过Importin??结合在Importin??和
RanBP2上,在RanGTP酶活化因子、RanBP1和RanGAP1等作用下,形成RanGDP-
Importin?-Importin?-货物蛋白的转运复合体;转运复合体在核孔蛋白和转运因子2
(NTF2)等的参与下通过NPC进入胞核内(图3-B)(Ribbeck等1998);在鸟苷酸交换因子
RCC1的作用下,RanGDP转换成RanGTP,使得Importin??和货物蛋白从上述转运复合体
中解离,完成货物蛋白的核内转运过程(图3-C);与货物蛋白解离后的Importin??仍然
与Ran-GTP结合并被转运出核。而Importin??与RanGTP及核输出受体(nuclearexport
receptor,CAS)结合形成Importin?-CAS-RanGTP复合体运出细胞核,在RanBP1及
RanGAP1等的作用下Importin?从复合体重新解离释放到细胞质中进入下一轮循环(图3-
D)(Kutay等1997)。经典的核输入过程的能量由Ran提供,Ran蛋白是小ras蛋白家族成
员,它有RanGTP和RanGDP两种形态(Quimby和Dasso2021)。RanGTP主要存在于细胞核
中,而RanGDP主要存在于细胞质中,这种不对称分布可以使Ran作为一个分子开关控制
货物蛋白运输的方向,调节其与载体蛋白的结合与释放。因此,在RanGTP含量较低的细
胞质中,核转运受体可以结合带有NLS的待运蛋白,而在细胞核高浓度RanGTP的情况
下释放货物蛋白(Kalab等2002;Smith等2002)。
四、叶绿体信号肽
叶绿体自身的遗传信息有限,大部分的叶绿体蛋白由核基因组编码,在细胞质中合成
后转运进叶绿体,拟南芥中大约有3000种核基因组编码蛋白被预测为叶绿体定位
(vanWijk2021)。绝大多数叶绿体定位的前体蛋白在其N端含有可被剪切的信号序列:转
移肽(transitpeptides)。与定位于内质网的“信号肽”和定位于线粒体的“前导肽”
一样,转移肽在氨基酸组成及长度等一级结构上没有明显的相似性,但一般都包含使它们
具有相似功能的结构域,这些功能包括与脂膜、叶绿体受体及信号肽酶等的相互作用
(Bruce2000)。有趣的是,目前至少约50种蛋白质在同一信号序列的引导下既可定位于
叶绿体也可定位于线粒体(Carrie等2021)。与线粒体相似,叶绿体中的蛋白也是在位于
双层脂膜上的转运蛋白复合体的共同作用
感谢您的阅读,祝您生活愉快。
本文发布于:2023-03-07 11:30:34,感谢您对本站的认可!
本文链接:https://www.wtabcd.cn/fanwen/zuowen/1678159835171666.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
本文word下载地址:内质.doc
本文 PDF 下载地址:内质.pdf
留言与评论(共有 0 条评论) |